[libcamera-devel] [RFC 1/1] android: Introduce CameraCapabilties class
Jacopo Mondi
jacopo at jmondi.org
Mon Jun 21 15:53:45 CEST 2021
Hi Laurent,
On Sun, Jun 20, 2021 at 04:12:11AM +0300, Laurent Pinchart wrote:
> Hi Jacopo,
>
> Thank you for the patch.
>
> On Sat, Jun 19, 2021 at 12:51:51PM +0200, Jacopo Mondi wrote:
> > The camera_device.cpp has grown a little too much, and it has quickly
> > become hard to maintain. Break out the handling of the static
> > information collected at camera initialization time to a new
> > CameraCapabilities class.
> >
> > Break out from the camera_device.cpp file all the functions relative to:
> > - Initialization of supported stream configurations
> > - Initialization of static metadata
> > - Initialization of request templates
> >
> > Signed-off-by: Jacopo Mondi <jacopo at jmondi.org>
> > ---
> > src/android/camera_capabilities.cpp | 1165 +++++++++++++++++++++++++++
> > src/android/camera_capabilities.h | 64 ++
> > src/android/camera_device.cpp | 1147 +-------------------------
> > src/android/camera_device.h | 27 +-
> > src/android/meson.build | 1 +
> > 5 files changed, 1245 insertions(+), 1159 deletions(-)
> > create mode 100644 src/android/camera_capabilities.cpp
> > create mode 100644 src/android/camera_capabilities.h
> >
> > diff --git a/src/android/camera_capabilities.cpp b/src/android/camera_capabilities.cpp
> > new file mode 100644
> > index 000000000000..20df9a6f1abb
> > --- /dev/null
> > +++ b/src/android/camera_capabilities.cpp
> > @@ -0,0 +1,1165 @@
> > +/* SPDX-License-Identifier: LGPL-2.1-or-later */
> > +/*
> > + * Copyright (C) 2021, Google Inc.
> > + *
> > + * camera_capabilities.cpp - Camera static properties manager
> > + */
> > +
> > +#include "camera_capabilities.h"
> > +
> > +#include <array>
> > +#include <cmath>
> > +
> > +#include <hardware/camera3.h>
> > +
> > +#include <libcamera/control_ids.h>
> > +#include <libcamera/controls.h>
> > +#include <libcamera/formats.h>
> > +#include <libcamera/property_ids.h>
> > +
> > +#include "libcamera/internal/formats.h"
> > +#include "libcamera/internal/log.h"
> > +
> > +using namespace libcamera;
> > +
> > +LOG_DECLARE_CATEGORY(HAL)
> > +
> > +namespace {
> > +
> > +/*
> > + * \var camera3Resolutions
> > + * \brief The list of image resolutions defined as mandatory to be supported by
> > + * the Android Camera3 specification
> > + */
> > +const std::vector<Size> camera3Resolutions = {
> > + { 320, 240 },
> > + { 640, 480 },
> > + { 1280, 720 },
> > + { 1920, 1080 }
> > +};
> > +
> > +/*
> > + * \struct Camera3Format
> > + * \brief Data associated with an Android format identifier
> > + * \var libcameraFormats List of libcamera pixel formats compatible with the
> > + * Android format
> > + * \var name The human-readable representation of the Android format code
> > + */
> > +struct Camera3Format {
> > + std::vector<PixelFormat> libcameraFormats;
> > + bool mandatory;
> > + const char *name;
> > +};
> > +
> > +/*
> > + * \var camera3FormatsMap
> > + * \brief Associate Android format code with ancillary data
> > + */
> > +const std::map<int, const Camera3Format> camera3FormatsMap = {
> > + {
> > + HAL_PIXEL_FORMAT_BLOB, {
> > + { formats::MJPEG },
> > + true,
> > + "BLOB"
> > + }
> > + }, {
> > + HAL_PIXEL_FORMAT_YCbCr_420_888, {
> > + { formats::NV12, formats::NV21 },
> > + true,
> > + "YCbCr_420_888"
> > + }
> > + }, {
> > + /*
> > + * \todo Translate IMPLEMENTATION_DEFINED inspecting the gralloc
> > + * usage flag. For now, copy the YCbCr_420 configuration.
> > + */
> > + HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED, {
> > + { formats::NV12, formats::NV21 },
> > + true,
> > + "IMPLEMENTATION_DEFINED"
> > + }
> > + }, {
> > + HAL_PIXEL_FORMAT_RAW10, {
> > + {
> > + formats::SBGGR10_CSI2P,
> > + formats::SGBRG10_CSI2P,
> > + formats::SGRBG10_CSI2P,
> > + formats::SRGGB10_CSI2P
> > + },
> > + false,
> > + "RAW10"
> > + }
> > + }, {
> > + HAL_PIXEL_FORMAT_RAW12, {
> > + {
> > + formats::SBGGR12_CSI2P,
> > + formats::SGBRG12_CSI2P,
> > + formats::SGRBG12_CSI2P,
> > + formats::SRGGB12_CSI2P
> > + },
> > + false,
> > + "RAW12"
> > + }
> > + }, {
> > + HAL_PIXEL_FORMAT_RAW16, {
> > + {
> > + formats::SBGGR16,
> > + formats::SGBRG16,
> > + formats::SGRBG16,
> > + formats::SRGGB16
> > + },
> > + false,
> > + "RAW16"
> > + }
> > + },
> > +};
> > +
> > +} /* namespace */
> > +
> > +int CameraCapabilities::initialize(std::shared_ptr<libcamera::Camera> camera,
> > + int orientation, int facing)
> > +{
> > + camera_ = camera;
> > + orientation_ = orientation;
> > + facing_ = facing;
> > +
> > + /* Acquire the camera and initialize available stream configurations. */
> > + int ret = camera_->acquire();
> > + if (ret) {
> > + LOG(HAL, Error) << "Failed to temporarily acquire the camera";
> > + return ret;
> > + }
> > +
> > + ret = initializeStreamConfigurations();
> > + camera_->release();
> > + if (ret)
> > + return ret;
> > +
> > + return initializeStaticMetadata();
> > +}
> > +
> > +std::vector<Size> CameraCapabilities::getYUVResolutions(CameraConfiguration *cameraConfig,
> > + const PixelFormat &pixelFormat,
> > + const std::vector<Size> &resolutions)
> > +{
> > + std::vector<Size> supportedResolutions;
> > +
> > + StreamConfiguration &cfg = cameraConfig->at(0);
> > + for (const Size &res : resolutions) {
> > + cfg.pixelFormat = pixelFormat;
> > + cfg.size = res;
> > +
> > + CameraConfiguration::Status status = cameraConfig->validate();
> > + if (status != CameraConfiguration::Valid) {
> > + LOG(HAL, Debug) << cfg.toString() << " not supported";
> > + continue;
> > + }
> > +
> > + LOG(HAL, Debug) << cfg.toString() << " supported";
> > +
> > + supportedResolutions.push_back(res);
> > + }
> > +
> > + return supportedResolutions;
> > +}
> > +
> > +std::vector<Size> CameraCapabilities::getRawResolutions(const libcamera::PixelFormat &pixelFormat)
> > +{
> > + std::unique_ptr<CameraConfiguration> cameraConfig =
> > + camera_->generateConfiguration({ StreamRole::Raw });
> > + StreamConfiguration &cfg = cameraConfig->at(0);
> > + const StreamFormats &formats = cfg.formats();
> > + std::vector<Size> supportedResolutions = formats.sizes(pixelFormat);
> > +
> > + return supportedResolutions;
> > +}
> > +
> > +/*
> > + * Initialize the format conversion map to translate from Android format
> > + * identifier to libcamera pixel formats and fill in the list of supported
> > + * stream configurations to be reported to the Android camera framework through
> > + * the Camera static metadata.
> > + */
> > +int CameraCapabilities::initializeStreamConfigurations()
> > +{
> > + /*
> > + * Get the maximum output resolutions
> > + * \todo Get this from the camera properties once defined
> > + */
> > + std::unique_ptr<CameraConfiguration> cameraConfig =
> > + camera_->generateConfiguration({ StillCapture });
> > + if (!cameraConfig) {
> > + LOG(HAL, Error) << "Failed to get maximum resolution";
> > + return -EINVAL;
> > + }
> > + StreamConfiguration &cfg = cameraConfig->at(0);
> > +
> > + /*
> > + * \todo JPEG - Adjust the maximum available resolution by taking the
> > + * JPEG encoder requirements into account (alignment and aspect ratio).
> > + */
> > + const Size maxRes = cfg.size;
> > + LOG(HAL, Debug) << "Maximum supported resolution: " << maxRes.toString();
> > +
> > + /*
> > + * Build the list of supported image resolutions.
> > + *
> > + * The resolutions listed in camera3Resolution are mandatory to be
> > + * supported, up to the camera maximum resolution.
> > + *
> > + * Augment the list by adding resolutions calculated from the camera
> > + * maximum one.
> > + */
> > + std::vector<Size> cameraResolutions;
> > + std::copy_if(camera3Resolutions.begin(), camera3Resolutions.end(),
> > + std::back_inserter(cameraResolutions),
> > + [&](const Size &res) { return res < maxRes; });
> > +
> > + /*
> > + * The Camera3 specification suggests adding 1/2 and 1/4 of the maximum
> > + * resolution.
> > + */
> > + for (unsigned int divider = 2;; divider <<= 1) {
> > + Size derivedSize{
> > + maxRes.width / divider,
> > + maxRes.height / divider,
> > + };
> > +
> > + if (derivedSize.width < 320 ||
> > + derivedSize.height < 240)
> > + break;
> > +
> > + cameraResolutions.push_back(derivedSize);
> > + }
> > + cameraResolutions.push_back(maxRes);
> > +
> > + /* Remove duplicated entries from the list of supported resolutions. */
> > + std::sort(cameraResolutions.begin(), cameraResolutions.end());
> > + auto last = std::unique(cameraResolutions.begin(), cameraResolutions.end());
> > + cameraResolutions.erase(last, cameraResolutions.end());
> > +
> > + /*
> > + * Build the list of supported camera formats.
> > + *
> > + * To each Android format a list of compatible libcamera formats is
> > + * associated. The first libcamera format that tests successful is added
> > + * to the format translation map used when configuring the streams.
> > + * It is then tested against the list of supported camera resolutions to
> > + * build the stream configuration map reported through the camera static
> > + * metadata.
> > + */
> > + Size maxJpegSize;
> > + for (const auto &format : camera3FormatsMap) {
> > + int androidFormat = format.first;
> > + const Camera3Format &camera3Format = format.second;
> > + const std::vector<PixelFormat> &libcameraFormats =
> > + camera3Format.libcameraFormats;
> > +
> > + LOG(HAL, Debug) << "Trying to map Android format "
> > + << camera3Format.name;
> > +
> > + /*
> > + * JPEG is always supported, either produced directly by the
> > + * camera, or encoded in the HAL.
> > + */
> > + if (androidFormat == HAL_PIXEL_FORMAT_BLOB) {
> > + formatsMap_[androidFormat] = formats::MJPEG;
> > + LOG(HAL, Debug) << "Mapped Android format "
> > + << camera3Format.name << " to "
> > + << formats::MJPEG.toString()
> > + << " (fixed mapping)";
> > + continue;
> > + }
> > +
> > + /*
> > + * Test the libcamera formats that can produce images
> > + * compatible with the format defined by Android.
> > + */
> > + PixelFormat mappedFormat;
> > + for (const PixelFormat &pixelFormat : libcameraFormats) {
> > +
> > + LOG(HAL, Debug) << "Testing " << pixelFormat.toString();
> > +
> > + /*
> > + * The stream configuration size can be adjusted,
> > + * not the pixel format.
> > + *
> > + * \todo This could be simplified once all pipeline
> > + * handlers will report the StreamFormats list of
> > + * supported formats.
> > + */
> > + cfg.pixelFormat = pixelFormat;
> > +
> > + CameraConfiguration::Status status = cameraConfig->validate();
> > + if (status != CameraConfiguration::Invalid &&
> > + cfg.pixelFormat == pixelFormat) {
> > + mappedFormat = pixelFormat;
> > + break;
> > + }
> > + }
> > +
> > + if (!mappedFormat.isValid()) {
> > + /* If the format is not mandatory, skip it. */
> > + if (!camera3Format.mandatory)
> > + continue;
> > +
> > + LOG(HAL, Error)
> > + << "Failed to map mandatory Android format "
> > + << camera3Format.name << " ("
> > + << utils::hex(androidFormat) << "): aborting";
> > + return -EINVAL;
> > + }
> > +
> > + /*
> > + * Record the mapping and then proceed to generate the
> > + * stream configurations map, by testing the image resolutions.
> > + */
> > + formatsMap_[androidFormat] = mappedFormat;
> > + LOG(HAL, Debug) << "Mapped Android format "
> > + << camera3Format.name << " to "
> > + << mappedFormat.toString();
> > +
> > + std::vector<Size> resolutions;
> > + const PixelFormatInfo &info = PixelFormatInfo::info(mappedFormat);
> > + if (info.colourEncoding == PixelFormatInfo::ColourEncodingRAW)
> > + resolutions = getRawResolutions(mappedFormat);
> > + else
> > + resolutions = getYUVResolutions(cameraConfig.get(),
> > + mappedFormat,
> > + cameraResolutions);
> > +
> > + for (const Size &res : resolutions) {
> > + streamConfigurations_.push_back({ res, androidFormat });
> > +
> > + /*
> > + * If the format is HAL_PIXEL_FORMAT_YCbCr_420_888
> > + * from which JPEG is produced, add an entry for
> > + * the JPEG stream.
> > + *
> > + * \todo Wire the JPEG encoder to query the supported
> > + * sizes provided a list of formats it can encode.
> > + *
> > + * \todo Support JPEG streams produced by the Camera
> > + * natively.
> > + */
> > + if (androidFormat == HAL_PIXEL_FORMAT_YCbCr_420_888) {
> > + streamConfigurations_.push_back(
> > + { res, HAL_PIXEL_FORMAT_BLOB });
> > + maxJpegSize = std::max(maxJpegSize, res);
> > + }
> > + }
> > +
> > + /*
> > + * \todo Calculate the maximum JPEG buffer size by asking the
> > + * encoder giving the maximum frame size required.
> > + */
> > + maxJpegBufferSize_ = maxJpegSize.width * maxJpegSize.height * 1.5;
> > + }
> > +
> > + LOG(HAL, Debug) << "Collected stream configuration map: ";
> > + for (const auto &entry : streamConfigurations_)
> > + LOG(HAL, Debug) << "{ " << entry.resolution.toString() << " - "
> > + << utils::hex(entry.androidFormat) << " }";
> > +
> > + return 0;
> > +}
> > +
> > +int CameraCapabilities::initializeStaticMetadata()
> > +{
> > + staticMetadata_ = std::make_unique<CameraMetadata>(64, 1024);
> > + if (!staticMetadata_->isValid()) {
> > + LOG(HAL, Error) << "Failed to allocate static metadata";
> > + staticMetadata_.reset();
> > + return -EINVAL;
> > + }
> > +
> > + const ControlInfoMap &controlsInfo = camera_->controls();
> > + const ControlList &properties = camera_->properties();
> > +
> > + /* Color correction static metadata. */
> > + {
> > + std::vector<uint8_t> data;
> > + data.reserve(3);
> > + const auto &infoMap = controlsInfo.find(&controls::draft::ColorCorrectionAberrationMode);
> > + if (infoMap != controlsInfo.end()) {
> > + for (const auto &value : infoMap->second.values())
> > + data.push_back(value.get<int32_t>());
> > + } else {
> > + data.push_back(ANDROID_COLOR_CORRECTION_ABERRATION_MODE_OFF);
> > + }
> > + staticMetadata_->addEntry(ANDROID_COLOR_CORRECTION_AVAILABLE_ABERRATION_MODES,
> > + data);
> > + }
> > +
> > + /* Control static metadata. */
> > + std::vector<uint8_t> aeAvailableAntiBandingModes = {
> > + ANDROID_CONTROL_AE_ANTIBANDING_MODE_OFF,
> > + ANDROID_CONTROL_AE_ANTIBANDING_MODE_50HZ,
> > + ANDROID_CONTROL_AE_ANTIBANDING_MODE_60HZ,
> > + ANDROID_CONTROL_AE_ANTIBANDING_MODE_AUTO,
> > + };
> > + staticMetadata_->addEntry(ANDROID_CONTROL_AE_AVAILABLE_ANTIBANDING_MODES,
> > + aeAvailableAntiBandingModes);
> > +
> > + std::vector<uint8_t> aeAvailableModes = {
> > + ANDROID_CONTROL_AE_MODE_ON,
> > + };
> > + staticMetadata_->addEntry(ANDROID_CONTROL_AE_AVAILABLE_MODES,
> > + aeAvailableModes);
> > +
> > + int64_t minFrameDurationNsec = -1;
> > + int64_t maxFrameDurationNsec = -1;
> > + const auto frameDurationsInfo = controlsInfo.find(&controls::FrameDurationLimits);
> > + if (frameDurationsInfo != controlsInfo.end()) {
> > + minFrameDurationNsec = frameDurationsInfo->second.min().get<int64_t>() * 1000;
> > + maxFrameDurationNsec = frameDurationsInfo->second.max().get<int64_t>() * 1000;
> > +
> > + /*
> > + * Adjust the minimum frame duration to comply with Android
> > + * requirements. The camera service mandates all preview/record
> > + * streams to have a minimum frame duration < 33,366 milliseconds
> > + * (see MAX_PREVIEW_RECORD_DURATION_NS in the camera service
> > + * implementation).
> > + *
> > + * If we're close enough (+ 500 useconds) to that value, round
> > + * the minimum frame duration of the camera to an accepted
> > + * value.
> > + */
> > + static constexpr int64_t MAX_PREVIEW_RECORD_DURATION_NS = 1e9 / 29.97;
> > + if (minFrameDurationNsec > MAX_PREVIEW_RECORD_DURATION_NS &&
> > + minFrameDurationNsec < MAX_PREVIEW_RECORD_DURATION_NS + 500000)
> > + minFrameDurationNsec = MAX_PREVIEW_RECORD_DURATION_NS - 1000;
> > +
> > + /*
> > + * The AE routine frame rate limits are computed using the frame
> > + * duration limits, as libcamera clips the AE routine to the
> > + * frame durations.
> > + */
> > + int32_t maxFps = std::round(1e9 / minFrameDurationNsec);
> > + int32_t minFps = std::round(1e9 / maxFrameDurationNsec);
> > + minFps = std::max(1, minFps);
> > +
> > + /*
> > + * Force rounding errors so that we have the proper frame
> > + * durations for when we reuse these variables later
> > + */
> > + minFrameDurationNsec = 1e9 / maxFps;
> > + maxFrameDurationNsec = 1e9 / minFps;
> > +
> > + /*
> > + * Register to the camera service {min, max} and {max, max}
> > + * intervals as requested by the metadata documentation.
> > + */
> > + int32_t availableAeFpsTarget[] = {
> > + minFps, maxFps, maxFps, maxFps
> > + };
> > + staticMetadata_->addEntry(ANDROID_CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES,
> > + availableAeFpsTarget);
> > + }
> > +
> > + std::vector<int32_t> aeCompensationRange = {
> > + 0, 0,
> > + };
> > + staticMetadata_->addEntry(ANDROID_CONTROL_AE_COMPENSATION_RANGE,
> > + aeCompensationRange);
> > +
> > + const camera_metadata_rational_t aeCompensationStep[] = {
> > + { 0, 1 }
> > + };
> > + staticMetadata_->addEntry(ANDROID_CONTROL_AE_COMPENSATION_STEP,
> > + aeCompensationStep);
> > +
> > + std::vector<uint8_t> availableAfModes = {
> > + ANDROID_CONTROL_AF_MODE_OFF,
> > + };
> > + staticMetadata_->addEntry(ANDROID_CONTROL_AF_AVAILABLE_MODES,
> > + availableAfModes);
> > +
> > + std::vector<uint8_t> availableEffects = {
> > + ANDROID_CONTROL_EFFECT_MODE_OFF,
> > + };
> > + staticMetadata_->addEntry(ANDROID_CONTROL_AVAILABLE_EFFECTS,
> > + availableEffects);
> > +
> > + std::vector<uint8_t> availableSceneModes = {
> > + ANDROID_CONTROL_SCENE_MODE_DISABLED,
> > + };
> > + staticMetadata_->addEntry(ANDROID_CONTROL_AVAILABLE_SCENE_MODES,
> > + availableSceneModes);
> > +
> > + std::vector<uint8_t> availableStabilizationModes = {
> > + ANDROID_CONTROL_VIDEO_STABILIZATION_MODE_OFF,
> > + };
> > + staticMetadata_->addEntry(ANDROID_CONTROL_AVAILABLE_VIDEO_STABILIZATION_MODES,
> > + availableStabilizationModes);
> > +
> > + /*
> > + * \todo Inspect the Camera capabilities to report the available
> > + * AWB modes. Default to AUTO as CTS tests require it.
> > + */
> > + std::vector<uint8_t> availableAwbModes = {
> > + ANDROID_CONTROL_AWB_MODE_AUTO,
> > + };
> > + staticMetadata_->addEntry(ANDROID_CONTROL_AWB_AVAILABLE_MODES,
> > + availableAwbModes);
> > +
> > + std::vector<int32_t> availableMaxRegions = {
> > + 0, 0, 0,
> > + };
> > + staticMetadata_->addEntry(ANDROID_CONTROL_MAX_REGIONS,
> > + availableMaxRegions);
> > +
> > + std::vector<uint8_t> sceneModesOverride = {
> > + ANDROID_CONTROL_AE_MODE_ON,
> > + ANDROID_CONTROL_AWB_MODE_AUTO,
> > + ANDROID_CONTROL_AF_MODE_OFF,
> > + };
> > + staticMetadata_->addEntry(ANDROID_CONTROL_SCENE_MODE_OVERRIDES,
> > + sceneModesOverride);
> > +
> > + uint8_t aeLockAvailable = ANDROID_CONTROL_AE_LOCK_AVAILABLE_FALSE;
> > + staticMetadata_->addEntry(ANDROID_CONTROL_AE_LOCK_AVAILABLE,
> > + aeLockAvailable);
> > +
> > + uint8_t awbLockAvailable = ANDROID_CONTROL_AWB_LOCK_AVAILABLE_FALSE;
> > + staticMetadata_->addEntry(ANDROID_CONTROL_AWB_LOCK_AVAILABLE,
> > + awbLockAvailable);
> > +
> > + char availableControlModes = ANDROID_CONTROL_MODE_AUTO;
> > + staticMetadata_->addEntry(ANDROID_CONTROL_AVAILABLE_MODES,
> > + availableControlModes);
> > +
> > + /* JPEG static metadata. */
> > +
> > + /*
> > + * Create the list of supported thumbnail sizes by inspecting the
> > + * available JPEG resolutions collected in streamConfigurations_ and
> > + * generate one entry for each aspect ratio.
> > + *
> > + * The JPEG thumbnailer can freely scale, so pick an arbitrary
> > + * (160, 160) size as the bounding rectangle, which is then cropped to
> > + * the different supported aspect ratios.
> > + */
> > + constexpr Size maxJpegThumbnail(160, 160);
> > + std::vector<Size> thumbnailSizes;
> > + thumbnailSizes.push_back({ 0, 0 });
> > + for (const auto &entry : streamConfigurations_) {
> > + if (entry.androidFormat != HAL_PIXEL_FORMAT_BLOB)
> > + continue;
> > +
> > + Size thumbnailSize = maxJpegThumbnail
> > + .boundedToAspectRatio({ entry.resolution.width,
> > + entry.resolution.height });
> > + thumbnailSizes.push_back(thumbnailSize);
> > + }
> > +
> > + std::sort(thumbnailSizes.begin(), thumbnailSizes.end());
> > + auto last = std::unique(thumbnailSizes.begin(), thumbnailSizes.end());
> > + thumbnailSizes.erase(last, thumbnailSizes.end());
> > +
> > + /* Transform sizes in to a list of integers that can be consumed. */
> > + std::vector<int32_t> thumbnailEntries;
> > + thumbnailEntries.reserve(thumbnailSizes.size() * 2);
> > + for (const auto &size : thumbnailSizes) {
> > + thumbnailEntries.push_back(size.width);
> > + thumbnailEntries.push_back(size.height);
> > + }
> > + staticMetadata_->addEntry(ANDROID_JPEG_AVAILABLE_THUMBNAIL_SIZES,
> > + thumbnailEntries);
> > +
> > + staticMetadata_->addEntry(ANDROID_JPEG_MAX_SIZE, maxJpegBufferSize_);
> > +
> > + /* Sensor static metadata. */
> > + std::array<int32_t, 2> pixelArraySize;
> > + {
> > + const Size &size = properties.get(properties::PixelArraySize);
> > + pixelArraySize[0] = size.width;
> > + pixelArraySize[1] = size.height;
> > + staticMetadata_->addEntry(ANDROID_SENSOR_INFO_PIXEL_ARRAY_SIZE,
> > + pixelArraySize);
> > + }
> > +
> > + if (properties.contains(properties::UnitCellSize)) {
> > + const Size &cellSize = properties.get<Size>(properties::UnitCellSize);
> > + std::array<float, 2> physicalSize{
> > + cellSize.width * pixelArraySize[0] / 1e6f,
> > + cellSize.height * pixelArraySize[1] / 1e6f
> > + };
> > + staticMetadata_->addEntry(ANDROID_SENSOR_INFO_PHYSICAL_SIZE,
> > + physicalSize);
> > + }
> > +
> > + {
> > + const Span<const Rectangle> &rects =
> > + properties.get(properties::PixelArrayActiveAreas);
> > + std::vector<int32_t> data{
> > + static_cast<int32_t>(rects[0].x),
> > + static_cast<int32_t>(rects[0].y),
> > + static_cast<int32_t>(rects[0].width),
> > + static_cast<int32_t>(rects[0].height),
> > + };
> > + staticMetadata_->addEntry(ANDROID_SENSOR_INFO_ACTIVE_ARRAY_SIZE,
> > + data);
> > + }
> > +
> > + int32_t sensitivityRange[] = {
> > + 32, 2400,
> > + };
> > + staticMetadata_->addEntry(ANDROID_SENSOR_INFO_SENSITIVITY_RANGE,
> > + sensitivityRange);
> > +
> > + /* Report the color filter arrangement if the camera reports it. */
> > + if (properties.contains(properties::draft::ColorFilterArrangement)) {
> > + uint8_t filterArr = properties.get(properties::draft::ColorFilterArrangement);
> > + staticMetadata_->addEntry(ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT,
> > + filterArr);
> > + }
> > +
> > + const auto &exposureInfo = controlsInfo.find(&controls::ExposureTime);
> > + if (exposureInfo != controlsInfo.end()) {
> > + int64_t exposureTimeRange[2] = {
> > + exposureInfo->second.min().get<int32_t>() * 1000LL,
> > + exposureInfo->second.max().get<int32_t>() * 1000LL,
> > + };
> > + staticMetadata_->addEntry(ANDROID_SENSOR_INFO_EXPOSURE_TIME_RANGE,
> > + exposureTimeRange, 2);
> > + }
> > +
> > + staticMetadata_->addEntry(ANDROID_SENSOR_ORIENTATION, orientation_);
> > +
> > + std::vector<int32_t> testPatternModes = {
> > + ANDROID_SENSOR_TEST_PATTERN_MODE_OFF
> > + };
> > + const auto &testPatternsInfo =
> > + controlsInfo.find(&controls::draft::TestPatternMode);
> > + if (testPatternsInfo != controlsInfo.end()) {
> > + const auto &values = testPatternsInfo->second.values();
> > + ASSERT(!values.empty());
> > + for (const auto &value : values) {
> > + switch (value.get<int32_t>()) {
> > + case controls::draft::TestPatternModeOff:
> > + /*
> > + * ANDROID_SENSOR_TEST_PATTERN_MODE_OFF is
> > + * already in testPatternModes.
> > + */
> > + break;
> > +
> > + case controls::draft::TestPatternModeSolidColor:
> > + testPatternModes.push_back(
> > + ANDROID_SENSOR_TEST_PATTERN_MODE_SOLID_COLOR);
> > + break;
> > +
> > + case controls::draft::TestPatternModeColorBars:
> > + testPatternModes.push_back(
> > + ANDROID_SENSOR_TEST_PATTERN_MODE_COLOR_BARS);
> > + break;
> > +
> > + case controls::draft::TestPatternModeColorBarsFadeToGray:
> > + testPatternModes.push_back(
> > + ANDROID_SENSOR_TEST_PATTERN_MODE_COLOR_BARS_FADE_TO_GRAY);
> > + break;
> > +
> > + case controls::draft::TestPatternModePn9:
> > + testPatternModes.push_back(
> > + ANDROID_SENSOR_TEST_PATTERN_MODE_PN9);
> > + break;
> > +
> > + case controls::draft::TestPatternModeCustom1:
> > + /* We don't support this yet. */
> > + break;
> > +
> > + default:
> > + LOG(HAL, Error) << "Unknown test pattern mode: "
> > + << value.get<int32_t>();
> > + continue;
> > + }
> > + }
> > + }
> > + staticMetadata_->addEntry(ANDROID_SENSOR_AVAILABLE_TEST_PATTERN_MODES,
> > + testPatternModes);
> > +
> > + uint8_t timestampSource = ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE_UNKNOWN;
> > + staticMetadata_->addEntry(ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE,
> > + timestampSource);
> > +
> > + if (maxFrameDurationNsec > 0)
> > + staticMetadata_->addEntry(ANDROID_SENSOR_INFO_MAX_FRAME_DURATION,
> > + maxFrameDurationNsec);
> > +
> > + /* Statistics static metadata. */
> > + uint8_t faceDetectMode = ANDROID_STATISTICS_FACE_DETECT_MODE_OFF;
> > + staticMetadata_->addEntry(ANDROID_STATISTICS_INFO_AVAILABLE_FACE_DETECT_MODES,
> > + faceDetectMode);
> > +
> > + int32_t maxFaceCount = 0;
> > + staticMetadata_->addEntry(ANDROID_STATISTICS_INFO_MAX_FACE_COUNT,
> > + maxFaceCount);
> > +
> > + {
> > + std::vector<uint8_t> data;
> > + data.reserve(2);
> > + const auto &infoMap = controlsInfo.find(&controls::draft::LensShadingMapMode);
> > + if (infoMap != controlsInfo.end()) {
> > + for (const auto &value : infoMap->second.values())
> > + data.push_back(value.get<int32_t>());
> > + } else {
> > + data.push_back(ANDROID_STATISTICS_LENS_SHADING_MAP_MODE_OFF);
> > + }
> > + staticMetadata_->addEntry(ANDROID_STATISTICS_INFO_AVAILABLE_LENS_SHADING_MAP_MODES,
> > + data);
> > + }
> > +
> > + /* Sync static metadata. */
> > + int32_t maxLatency = ANDROID_SYNC_MAX_LATENCY_UNKNOWN;
> > + staticMetadata_->addEntry(ANDROID_SYNC_MAX_LATENCY, maxLatency);
> > +
> > + /* Flash static metadata. */
> > + char flashAvailable = ANDROID_FLASH_INFO_AVAILABLE_FALSE;
> > + staticMetadata_->addEntry(ANDROID_FLASH_INFO_AVAILABLE,
> > + flashAvailable);
> > +
> > + /* Lens static metadata. */
> > + std::vector<float> lensApertures = {
> > + 2.53 / 100,
> > + };
> > + staticMetadata_->addEntry(ANDROID_LENS_INFO_AVAILABLE_APERTURES,
> > + lensApertures);
> > +
> > + uint8_t lensFacing;
> > + switch (facing_) {
> > + default:
> > + case CAMERA_FACING_FRONT:
> > + lensFacing = ANDROID_LENS_FACING_FRONT;
> > + break;
> > + case CAMERA_FACING_BACK:
> > + lensFacing = ANDROID_LENS_FACING_BACK;
> > + break;
> > + case CAMERA_FACING_EXTERNAL:
> > + lensFacing = ANDROID_LENS_FACING_EXTERNAL;
> > + break;
> > + }
> > + staticMetadata_->addEntry(ANDROID_LENS_FACING, lensFacing);
> > +
> > + std::vector<float> lensFocalLengths = {
> > + 1,
> > + };
> > + staticMetadata_->addEntry(ANDROID_LENS_INFO_AVAILABLE_FOCAL_LENGTHS,
> > + lensFocalLengths);
> > +
> > + std::vector<uint8_t> opticalStabilizations = {
> > + ANDROID_LENS_OPTICAL_STABILIZATION_MODE_OFF,
> > + };
> > + staticMetadata_->addEntry(ANDROID_LENS_INFO_AVAILABLE_OPTICAL_STABILIZATION,
> > + opticalStabilizations);
> > +
> > + float hypeFocalDistance = 0;
> > + staticMetadata_->addEntry(ANDROID_LENS_INFO_HYPERFOCAL_DISTANCE,
> > + hypeFocalDistance);
> > +
> > + float minFocusDistance = 0;
> > + staticMetadata_->addEntry(ANDROID_LENS_INFO_MINIMUM_FOCUS_DISTANCE,
> > + minFocusDistance);
> > +
> > + /* Noise reduction modes. */
> > + {
> > + std::vector<uint8_t> data;
> > + data.reserve(5);
> > + const auto &infoMap = controlsInfo.find(&controls::draft::NoiseReductionMode);
> > + if (infoMap != controlsInfo.end()) {
> > + for (const auto &value : infoMap->second.values())
> > + data.push_back(value.get<int32_t>());
> > + } else {
> > + data.push_back(ANDROID_NOISE_REDUCTION_MODE_OFF);
> > + }
> > + staticMetadata_->addEntry(ANDROID_NOISE_REDUCTION_AVAILABLE_NOISE_REDUCTION_MODES,
> > + data);
> > + }
> > +
> > + /* Scaler static metadata. */
> > +
> > + /*
> > + * \todo The digital zoom factor is a property that depends on the
> > + * desired output configuration and the sensor frame size input to the
> > + * ISP. This information is not available to the Android HAL, not at
> > + * initialization time at least.
> > + *
> > + * As a workaround rely on pipeline handlers initializing the
> > + * ScalerCrop control with the camera default configuration and use the
> > + * maximum and minimum crop rectangles to calculate the digital zoom
> > + * factor.
> > + */
> > + float maxZoom = 1.0f;
> > + const auto scalerCrop = controlsInfo.find(&controls::ScalerCrop);
> > + if (scalerCrop != controlsInfo.end()) {
> > + Rectangle min = scalerCrop->second.min().get<Rectangle>();
> > + Rectangle max = scalerCrop->second.max().get<Rectangle>();
> > + maxZoom = std::min(1.0f * max.width / min.width,
> > + 1.0f * max.height / min.height);
> > + }
> > + staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_MAX_DIGITAL_ZOOM,
> > + maxZoom);
> > +
> > + std::vector<uint32_t> availableStreamConfigurations;
> > + availableStreamConfigurations.reserve(streamConfigurations_.size() * 4);
> > + for (const auto &entry : streamConfigurations_) {
> > + availableStreamConfigurations.push_back(entry.androidFormat);
> > + availableStreamConfigurations.push_back(entry.resolution.width);
> > + availableStreamConfigurations.push_back(entry.resolution.height);
> > + availableStreamConfigurations.push_back(
> > + ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT);
> > + }
> > + staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS,
> > + availableStreamConfigurations);
> > +
> > + std::vector<int64_t> availableStallDurations = {
> > + ANDROID_SCALER_AVAILABLE_FORMATS_BLOB, 2560, 1920, 33333333,
> > + };
> > + staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_STALL_DURATIONS,
> > + availableStallDurations);
> > +
> > + /* Use the minimum frame duration for all the YUV/RGB formats. */
> > + if (minFrameDurationNsec > 0) {
> > + std::vector<int64_t> minFrameDurations;
> > + minFrameDurations.reserve(streamConfigurations_.size() * 4);
> > + for (const auto &entry : streamConfigurations_) {
> > + minFrameDurations.push_back(entry.androidFormat);
> > + minFrameDurations.push_back(entry.resolution.width);
> > + minFrameDurations.push_back(entry.resolution.height);
> > + minFrameDurations.push_back(minFrameDurationNsec);
> > + }
> > + staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS,
> > + minFrameDurations);
> > + }
> > +
> > + uint8_t croppingType = ANDROID_SCALER_CROPPING_TYPE_CENTER_ONLY;
> > + staticMetadata_->addEntry(ANDROID_SCALER_CROPPING_TYPE, croppingType);
> > +
> > + /* Info static metadata. */
> > + uint8_t supportedHWLevel = ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_LIMITED;
> > + staticMetadata_->addEntry(ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL,
> > + supportedHWLevel);
> > +
> > + /* Request static metadata. */
> > + int32_t partialResultCount = 1;
> > + staticMetadata_->addEntry(ANDROID_REQUEST_PARTIAL_RESULT_COUNT,
> > + partialResultCount);
> > +
> > + {
> > + /* Default the value to 2 if not reported by the camera. */
> > + uint8_t maxPipelineDepth = 2;
> > + const auto &infoMap = controlsInfo.find(&controls::draft::PipelineDepth);
> > + if (infoMap != controlsInfo.end())
> > + maxPipelineDepth = infoMap->second.max().get<int32_t>();
> > + staticMetadata_->addEntry(ANDROID_REQUEST_PIPELINE_MAX_DEPTH,
> > + maxPipelineDepth);
> > + }
> > +
> > + /* LIMITED does not support reprocessing. */
> > + uint32_t maxNumInputStreams = 0;
> > + staticMetadata_->addEntry(ANDROID_REQUEST_MAX_NUM_INPUT_STREAMS,
> > + maxNumInputStreams);
> > +
> > + std::vector<uint8_t> availableCapabilities = {
> > + ANDROID_REQUEST_AVAILABLE_CAPABILITIES_BACKWARD_COMPATIBLE,
> > + };
> > +
> > + /* Report if camera supports RAW. */
> > + bool rawStreamAvailable = false;
> > + std::unique_ptr<CameraConfiguration> cameraConfig =
> > + camera_->generateConfiguration({ StreamRole::Raw });
> > + if (cameraConfig && !cameraConfig->empty()) {
> > + const PixelFormatInfo &info =
> > + PixelFormatInfo::info(cameraConfig->at(0).pixelFormat);
> > + /* Only advertise RAW support if RAW16 is possible. */
> > + if (info.colourEncoding == PixelFormatInfo::ColourEncodingRAW &&
> > + info.bitsPerPixel == 16) {
> > + rawStreamAvailable = true;
> > + availableCapabilities.push_back(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_RAW);
> > + }
> > + }
> > +
> > + /* Number of { RAW, YUV, JPEG } supported output streams */
> > + int32_t numOutStreams[] = { rawStreamAvailable, 2, 1 };
> > + staticMetadata_->addEntry(ANDROID_REQUEST_MAX_NUM_OUTPUT_STREAMS,
> > + numOutStreams);
> > +
> > + staticMetadata_->addEntry(ANDROID_REQUEST_AVAILABLE_CAPABILITIES,
> > + availableCapabilities);
> > +
> > + std::vector<int32_t> availableCharacteristicsKeys = {
> > + ANDROID_COLOR_CORRECTION_AVAILABLE_ABERRATION_MODES,
> > + ANDROID_CONTROL_AE_AVAILABLE_ANTIBANDING_MODES,
> > + ANDROID_CONTROL_AE_AVAILABLE_MODES,
> > + ANDROID_CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES,
> > + ANDROID_CONTROL_AE_COMPENSATION_RANGE,
> > + ANDROID_CONTROL_AE_COMPENSATION_STEP,
> > + ANDROID_CONTROL_AE_LOCK_AVAILABLE,
> > + ANDROID_CONTROL_AF_AVAILABLE_MODES,
> > + ANDROID_CONTROL_AVAILABLE_EFFECTS,
> > + ANDROID_CONTROL_AVAILABLE_MODES,
> > + ANDROID_CONTROL_AVAILABLE_SCENE_MODES,
> > + ANDROID_CONTROL_AVAILABLE_VIDEO_STABILIZATION_MODES,
> > + ANDROID_CONTROL_AWB_AVAILABLE_MODES,
> > + ANDROID_CONTROL_AWB_LOCK_AVAILABLE,
> > + ANDROID_CONTROL_MAX_REGIONS,
> > + ANDROID_CONTROL_SCENE_MODE_OVERRIDES,
> > + ANDROID_FLASH_INFO_AVAILABLE,
> > + ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL,
> > + ANDROID_JPEG_AVAILABLE_THUMBNAIL_SIZES,
> > + ANDROID_JPEG_MAX_SIZE,
> > + ANDROID_LENS_FACING,
> > + ANDROID_LENS_INFO_AVAILABLE_APERTURES,
> > + ANDROID_LENS_INFO_AVAILABLE_FOCAL_LENGTHS,
> > + ANDROID_LENS_INFO_AVAILABLE_OPTICAL_STABILIZATION,
> > + ANDROID_LENS_INFO_HYPERFOCAL_DISTANCE,
> > + ANDROID_LENS_INFO_MINIMUM_FOCUS_DISTANCE,
> > + ANDROID_NOISE_REDUCTION_AVAILABLE_NOISE_REDUCTION_MODES,
> > + ANDROID_REQUEST_AVAILABLE_CAPABILITIES,
> > + ANDROID_REQUEST_MAX_NUM_INPUT_STREAMS,
> > + ANDROID_REQUEST_MAX_NUM_OUTPUT_STREAMS,
> > + ANDROID_REQUEST_PARTIAL_RESULT_COUNT,
> > + ANDROID_REQUEST_PIPELINE_MAX_DEPTH,
> > + ANDROID_SCALER_AVAILABLE_MAX_DIGITAL_ZOOM,
> > + ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS,
> > + ANDROID_SCALER_AVAILABLE_STALL_DURATIONS,
> > + ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS,
> > + ANDROID_SCALER_CROPPING_TYPE,
> > + ANDROID_SENSOR_AVAILABLE_TEST_PATTERN_MODES,
> > + ANDROID_SENSOR_INFO_ACTIVE_ARRAY_SIZE,
> > + ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT,
> > + ANDROID_SENSOR_INFO_EXPOSURE_TIME_RANGE,
> > + ANDROID_SENSOR_INFO_MAX_FRAME_DURATION,
> > + ANDROID_SENSOR_INFO_PHYSICAL_SIZE,
> > + ANDROID_SENSOR_INFO_PIXEL_ARRAY_SIZE,
> > + ANDROID_SENSOR_INFO_SENSITIVITY_RANGE,
> > + ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE,
> > + ANDROID_SENSOR_ORIENTATION,
> > + ANDROID_STATISTICS_INFO_AVAILABLE_FACE_DETECT_MODES,
> > + ANDROID_STATISTICS_INFO_MAX_FACE_COUNT,
> > + ANDROID_SYNC_MAX_LATENCY,
> > + };
> > + staticMetadata_->addEntry(ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS,
> > + availableCharacteristicsKeys);
> > +
> > + std::vector<int32_t> availableRequestKeys = {
> > + ANDROID_COLOR_CORRECTION_ABERRATION_MODE,
> > + ANDROID_CONTROL_AE_ANTIBANDING_MODE,
> > + ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION,
> > + ANDROID_CONTROL_AE_LOCK,
> > + ANDROID_CONTROL_AE_MODE,
> > + ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER,
> > + ANDROID_CONTROL_AE_TARGET_FPS_RANGE,
> > + ANDROID_CONTROL_AF_MODE,
> > + ANDROID_CONTROL_AF_TRIGGER,
> > + ANDROID_CONTROL_AWB_LOCK,
> > + ANDROID_CONTROL_AWB_MODE,
> > + ANDROID_CONTROL_CAPTURE_INTENT,
> > + ANDROID_CONTROL_EFFECT_MODE,
> > + ANDROID_CONTROL_MODE,
> > + ANDROID_CONTROL_SCENE_MODE,
> > + ANDROID_CONTROL_VIDEO_STABILIZATION_MODE,
> > + ANDROID_FLASH_MODE,
> > + ANDROID_JPEG_ORIENTATION,
> > + ANDROID_JPEG_QUALITY,
> > + ANDROID_JPEG_THUMBNAIL_QUALITY,
> > + ANDROID_JPEG_THUMBNAIL_SIZE,
> > + ANDROID_LENS_APERTURE,
> > + ANDROID_LENS_OPTICAL_STABILIZATION_MODE,
> > + ANDROID_NOISE_REDUCTION_MODE,
> > + ANDROID_SCALER_CROP_REGION,
> > + ANDROID_STATISTICS_FACE_DETECT_MODE
> > + };
> > + staticMetadata_->addEntry(ANDROID_REQUEST_AVAILABLE_REQUEST_KEYS,
> > + availableRequestKeys);
> > +
> > + std::vector<int32_t> availableResultKeys = {
> > + ANDROID_COLOR_CORRECTION_ABERRATION_MODE,
> > + ANDROID_CONTROL_AE_ANTIBANDING_MODE,
> > + ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION,
> > + ANDROID_CONTROL_AE_LOCK,
> > + ANDROID_CONTROL_AE_MODE,
> > + ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER,
> > + ANDROID_CONTROL_AE_STATE,
> > + ANDROID_CONTROL_AE_TARGET_FPS_RANGE,
> > + ANDROID_CONTROL_AF_MODE,
> > + ANDROID_CONTROL_AF_STATE,
> > + ANDROID_CONTROL_AF_TRIGGER,
> > + ANDROID_CONTROL_AWB_LOCK,
> > + ANDROID_CONTROL_AWB_MODE,
> > + ANDROID_CONTROL_AWB_STATE,
> > + ANDROID_CONTROL_CAPTURE_INTENT,
> > + ANDROID_CONTROL_EFFECT_MODE,
> > + ANDROID_CONTROL_MODE,
> > + ANDROID_CONTROL_SCENE_MODE,
> > + ANDROID_CONTROL_VIDEO_STABILIZATION_MODE,
> > + ANDROID_FLASH_MODE,
> > + ANDROID_FLASH_STATE,
> > + ANDROID_JPEG_GPS_COORDINATES,
> > + ANDROID_JPEG_GPS_PROCESSING_METHOD,
> > + ANDROID_JPEG_GPS_TIMESTAMP,
> > + ANDROID_JPEG_ORIENTATION,
> > + ANDROID_JPEG_QUALITY,
> > + ANDROID_JPEG_SIZE,
> > + ANDROID_JPEG_THUMBNAIL_QUALITY,
> > + ANDROID_JPEG_THUMBNAIL_SIZE,
> > + ANDROID_LENS_APERTURE,
> > + ANDROID_LENS_FOCAL_LENGTH,
> > + ANDROID_LENS_OPTICAL_STABILIZATION_MODE,
> > + ANDROID_LENS_STATE,
> > + ANDROID_NOISE_REDUCTION_MODE,
> > + ANDROID_REQUEST_PIPELINE_DEPTH,
> > + ANDROID_SCALER_CROP_REGION,
> > + ANDROID_SENSOR_EXPOSURE_TIME,
> > + ANDROID_SENSOR_FRAME_DURATION,
> > + ANDROID_SENSOR_ROLLING_SHUTTER_SKEW,
> > + ANDROID_SENSOR_TEST_PATTERN_MODE,
> > + ANDROID_SENSOR_TIMESTAMP,
> > + ANDROID_STATISTICS_FACE_DETECT_MODE,
> > + ANDROID_STATISTICS_LENS_SHADING_MAP_MODE,
> > + ANDROID_STATISTICS_HOT_PIXEL_MAP_MODE,
> > + ANDROID_STATISTICS_SCENE_FLICKER,
> > + };
> > + staticMetadata_->addEntry(ANDROID_REQUEST_AVAILABLE_RESULT_KEYS,
> > + availableResultKeys);
> > +
> > + if (!staticMetadata_->isValid()) {
> > + LOG(HAL, Error) << "Failed to construct static metadata";
> > + staticMetadata_.reset();
> > + return -EINVAL;
> > + }
> > +
> > + if (staticMetadata_->resized()) {
> > + auto [entryCount, dataCount] = staticMetadata_->usage();
> > + LOG(HAL, Info)
> > + << "Static metadata resized: " << entryCount
> > + << " entries and " << dataCount << " bytes used";
> > + }
> > +
> > + return 0;
> > +}
> > +
> > +/* Translate Android format code to libcamera pixel format. */
> > +PixelFormat CameraCapabilities::toPixelFormat(int format) const
> > +{
> > + auto it = formatsMap_.find(format);
> > + if (it == formatsMap_.end()) {
> > + LOG(HAL, Error) << "Requested format " << utils::hex(format)
> > + << " not supported";
> > + return PixelFormat();
> > + }
> > +
> > + return it->second;
> > +}
> > +
> > +std::unique_ptr<CameraMetadata> CameraCapabilities::requestTemplatePreview() const
> > +{
> > + /*
> > + * \todo Keep this in sync with the actual number of entries.
> > + * Currently: 20 entries, 35 bytes
> > + */
> > + auto requestTemplate = std::make_unique<CameraMetadata>(21, 36);
> > + if (!requestTemplate->isValid()) {
> > + return nullptr;
> > + }
> > +
> > + /* Get the FPS range registered in the static metadata. */
> > + camera_metadata_ro_entry_t entry;
> > + bool found = staticMetadata_->getEntry(ANDROID_CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES,
> > + &entry);
> > + if (!found) {
> > + LOG(HAL, Error) << "Cannot create capture template without FPS range";
> > + return nullptr;
> > + }
> > +
> > + /*
> > + * Assume the AE_AVAILABLE_TARGET_FPS_RANGE static metadata
> > + * has been assembled as {{min, max} {max, max}}.
> > + */
> > + requestTemplate->addEntry(ANDROID_CONTROL_AE_TARGET_FPS_RANGE,
> > + entry.data.i32, 2);
> > +
> > + uint8_t aeMode = ANDROID_CONTROL_AE_MODE_ON;
> > + requestTemplate->addEntry(ANDROID_CONTROL_AE_MODE, aeMode);
> > +
> > + int32_t aeExposureCompensation = 0;
> > + requestTemplate->addEntry(ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION,
> > + aeExposureCompensation);
> > +
> > + uint8_t aePrecaptureTrigger = ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER_IDLE;
> > + requestTemplate->addEntry(ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER,
> > + aePrecaptureTrigger);
> > +
> > + uint8_t aeLock = ANDROID_CONTROL_AE_LOCK_OFF;
> > + requestTemplate->addEntry(ANDROID_CONTROL_AE_LOCK, aeLock);
> > +
> > + uint8_t aeAntibandingMode = ANDROID_CONTROL_AE_ANTIBANDING_MODE_AUTO;
> > + requestTemplate->addEntry(ANDROID_CONTROL_AE_ANTIBANDING_MODE,
> > + aeAntibandingMode);
> > +
> > + uint8_t afMode = ANDROID_CONTROL_AF_MODE_OFF;
> > + requestTemplate->addEntry(ANDROID_CONTROL_AF_MODE, afMode);
> > +
> > + uint8_t afTrigger = ANDROID_CONTROL_AF_TRIGGER_IDLE;
> > + requestTemplate->addEntry(ANDROID_CONTROL_AF_TRIGGER, afTrigger);
> > +
> > + uint8_t awbMode = ANDROID_CONTROL_AWB_MODE_AUTO;
> > + requestTemplate->addEntry(ANDROID_CONTROL_AWB_MODE, awbMode);
> > +
> > + uint8_t awbLock = ANDROID_CONTROL_AWB_LOCK_OFF;
> > + requestTemplate->addEntry(ANDROID_CONTROL_AWB_LOCK, awbLock);
> > +
> > + uint8_t flashMode = ANDROID_FLASH_MODE_OFF;
> > + requestTemplate->addEntry(ANDROID_FLASH_MODE, flashMode);
> > +
> > + uint8_t faceDetectMode = ANDROID_STATISTICS_FACE_DETECT_MODE_OFF;
> > + requestTemplate->addEntry(ANDROID_STATISTICS_FACE_DETECT_MODE,
> > + faceDetectMode);
> > +
> > + uint8_t noiseReduction = ANDROID_NOISE_REDUCTION_MODE_OFF;
> > + requestTemplate->addEntry(ANDROID_NOISE_REDUCTION_MODE,
> > + noiseReduction);
> > +
> > + uint8_t aberrationMode = ANDROID_COLOR_CORRECTION_ABERRATION_MODE_OFF;
> > + requestTemplate->addEntry(ANDROID_COLOR_CORRECTION_ABERRATION_MODE,
> > + aberrationMode);
> > +
> > + uint8_t controlMode = ANDROID_CONTROL_MODE_AUTO;
> > + requestTemplate->addEntry(ANDROID_CONTROL_MODE, controlMode);
> > +
> > + float lensAperture = 2.53 / 100;
> > + requestTemplate->addEntry(ANDROID_LENS_APERTURE, lensAperture);
> > +
> > + uint8_t opticalStabilization = ANDROID_LENS_OPTICAL_STABILIZATION_MODE_OFF;
> > + requestTemplate->addEntry(ANDROID_LENS_OPTICAL_STABILIZATION_MODE,
> > + opticalStabilization);
> > +
> > + uint8_t captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_PREVIEW;
> > + requestTemplate->addEntry(ANDROID_CONTROL_CAPTURE_INTENT,
> > + captureIntent);
> > +
> > + return requestTemplate;
> > +}
> > +
> > +std::unique_ptr<CameraMetadata> CameraCapabilities::requestTemplateVideo() const
> > +{
> > + std::unique_ptr<CameraMetadata> previewTemplate = requestTemplatePreview();
> > + if (!previewTemplate)
> > + return nullptr;
> > +
> > + /*
> > + * The video template requires a fixed FPS range. Everything else
> > + * stays the same as the preview template.
> > + */
> > + camera_metadata_ro_entry_t entry;
> > + staticMetadata_->getEntry(ANDROID_CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES,
> > + &entry);
> > +
> > + /*
> > + * Assume the AE_AVAILABLE_TARGET_FPS_RANGE static metadata
> > + * has been assembled as {{min, max} {max, max}}.
> > + */
> > + previewTemplate->updateEntry(ANDROID_CONTROL_AE_TARGET_FPS_RANGE,
> > + entry.data.i32 + 2, 2);
> > +
> > + return previewTemplate;
> > +}
> > diff --git a/src/android/camera_capabilities.h b/src/android/camera_capabilities.h
> > new file mode 100644
> > index 000000000000..3a427e768aff
> > --- /dev/null
> > +++ b/src/android/camera_capabilities.h
> > @@ -0,0 +1,64 @@
> > +/* SPDX-License-Identifier: LGPL-2.1-or-later */
> > +/*
> > + * Copyright (C) 2021, Google Inc.
> > + *
> > + * camera_capabilities.h - Camera static properties manager
> > + */
> > +#ifndef __ANDROID_CAMERA_CAPABILITIES_H__
> > +#define __ANDROID_CAMERA_CAPABILITIES_H__
> > +
> > +#include <map>
> > +#include <memory>
> > +#include <vector>
> > +
> > +#include <libcamera/camera.h>
> > +#include <libcamera/class.h>
> > +#include <libcamera/geometry.h>
> > +
> > +#include "camera_metadata.h"
> > +
> > +class CameraCapabilities
> > +{
> > +public:
> > + CameraCapabilities() = default;
> > +
> > + int initialize(std::shared_ptr<libcamera::Camera> camera,
> > + int orientation, int facing);
> > +
> > + CameraMetadata *staticMetadata() const { return staticMetadata_.get(); }
> > + libcamera::PixelFormat toPixelFormat(int format) const;
>
> You should include libcamera/format.h for PixelFormat.
ack!
>
> > + unsigned int maxJpegBufferSize() const { return maxJpegBufferSize_; }
> > +
> > + std::unique_ptr<CameraMetadata> requestTemplatePreview() const;
> > + std::unique_ptr<CameraMetadata> requestTemplateVideo() const;
> > +
> > +private:
> > + LIBCAMERA_DISABLE_COPY_AND_MOVE(CameraCapabilities)
> > +
> > + struct Camera3StreamConfiguration {
> > + libcamera::Size resolution;
> > + int androidFormat;
> > + };
> > +
> > + std::vector<libcamera::Size>
> > + getYUVResolutions(libcamera::CameraConfiguration *cameraConfig,
>
> This needs libcamera/camera.h.
>
Isn't it included ?
> > +#include <libcamera/camera.h>
> > + const libcamera::PixelFormat &pixelFormat,
> > + const std::vector<libcamera::Size> &resolutions);
> > + std::vector<libcamera::Size>
> > + getRawResolutions(const libcamera::PixelFormat &pixelFormat);
> > + int initializeStreamConfigurations();
> > +
> > + int initializeStaticMetadata();
> > +
> > + std::shared_ptr<libcamera::Camera> camera_;
> > +
> > + int facing_;
> > + int orientation_;
> > +
> > + std::vector<Camera3StreamConfiguration> streamConfigurations_;
> > + std::map<int, libcamera::PixelFormat> formatsMap_;
> > + std::unique_ptr<CameraMetadata> staticMetadata_;
> > + unsigned int maxJpegBufferSize_;
> > +};
> > +
> > +#endif /* __ANDROID_CAMERA_CAPABILITIES_H__ */
> > diff --git a/src/android/camera_device.cpp b/src/android/camera_device.cpp
> > index 8c71fd0675d3..4bd125d7020a 100644
> > --- a/src/android/camera_device.cpp
> > +++ b/src/android/camera_device.cpp
> > @@ -10,11 +10,8 @@
> > #include "camera_ops.h"
> > #include "post_processor.h"
> >
> > -#include <array>
> > -#include <cmath>
> > #include <fstream>
> > #include <sys/mman.h>
> > -#include <tuple>
> > #include <unistd.h>
> > #include <vector>
> >
> > @@ -23,7 +20,6 @@
> > #include <libcamera/formats.h>
> > #include <libcamera/property_ids.h>
> >
> > -#include "libcamera/internal/formats.h"
> > #include "libcamera/internal/log.h"
> > #include "libcamera/internal/thread.h"
> > #include "libcamera/internal/utils.h"
> > @@ -36,94 +32,6 @@ LOG_DECLARE_CATEGORY(HAL)
> >
> > namespace {
> >
> > -/*
> > - * \var camera3Resolutions
> > - * \brief The list of image resolutions defined as mandatory to be supported by
> > - * the Android Camera3 specification
> > - */
> > -const std::vector<Size> camera3Resolutions = {
> > - { 320, 240 },
> > - { 640, 480 },
> > - { 1280, 720 },
> > - { 1920, 1080 }
> > -};
> > -
> > -/*
> > - * \struct Camera3Format
> > - * \brief Data associated with an Android format identifier
> > - * \var libcameraFormats List of libcamera pixel formats compatible with the
> > - * Android format
> > - * \var name The human-readable representation of the Android format code
> > - */
> > -struct Camera3Format {
> > - std::vector<PixelFormat> libcameraFormats;
> > - bool mandatory;
> > - const char *name;
> > -};
> > -
> > -/*
> > - * \var camera3FormatsMap
> > - * \brief Associate Android format code with ancillary data
> > - */
> > -const std::map<int, const Camera3Format> camera3FormatsMap = {
> > - {
> > - HAL_PIXEL_FORMAT_BLOB, {
> > - { formats::MJPEG },
> > - true,
> > - "BLOB"
> > - }
> > - }, {
> > - HAL_PIXEL_FORMAT_YCbCr_420_888, {
> > - { formats::NV12, formats::NV21 },
> > - true,
> > - "YCbCr_420_888"
> > - }
> > - }, {
> > - /*
> > - * \todo Translate IMPLEMENTATION_DEFINED inspecting the gralloc
> > - * usage flag. For now, copy the YCbCr_420 configuration.
> > - */
> > - HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED, {
> > - { formats::NV12, formats::NV21 },
> > - true,
> > - "IMPLEMENTATION_DEFINED"
> > - }
> > - }, {
> > - HAL_PIXEL_FORMAT_RAW10, {
> > - {
> > - formats::SBGGR10_CSI2P,
> > - formats::SGBRG10_CSI2P,
> > - formats::SGRBG10_CSI2P,
> > - formats::SRGGB10_CSI2P
> > - },
> > - false,
> > - "RAW10"
> > - }
> > - }, {
> > - HAL_PIXEL_FORMAT_RAW12, {
> > - {
> > - formats::SBGGR12_CSI2P,
> > - formats::SGBRG12_CSI2P,
> > - formats::SGRBG12_CSI2P,
> > - formats::SRGGB12_CSI2P
> > - },
> > - false,
> > - "RAW12"
> > - }
> > - }, {
> > - HAL_PIXEL_FORMAT_RAW16, {
> > - {
> > - formats::SBGGR16,
> > - formats::SGBRG16,
> > - formats::SGRBG16,
> > - formats::SRGGB16
> > - },
> > - false,
> > - "RAW16"
> > - }
> > - },
> > -};
> > -
> > /*
> > * \struct Camera3StreamConfig
> > * \brief Data to store StreamConfiguration associated with camera3_stream(s)
> > @@ -512,242 +420,7 @@ int CameraDevice::initialize(const CameraConfigData *cameraConfigData)
> > orientation_ = 0;
> > }
>
> Shouldn't the code above be moved too ?
>
It seems to me it deals with run time stream configuration, not to
building the static list of available camera streams like the part I
moved, doesn't it ?
> >
> > - /* Acquire the camera and initialize available stream configurations. */
> > - int ret = camera_->acquire();
> > - if (ret) {
> > - LOG(HAL, Error) << "Failed to temporarily acquire the camera";
> > - return ret;
> > - }
> > -
> > - ret = initializeStreamConfigurations();
> > - camera_->release();
> > - return ret;
> > -}
> > -
> > -std::vector<Size> CameraDevice::getYUVResolutions(CameraConfiguration *cameraConfig,
> > - const PixelFormat &pixelFormat,
> > - const std::vector<Size> &resolutions)
> > -{
> > - std::vector<Size> supportedResolutions;
> > -
> > - StreamConfiguration &cfg = cameraConfig->at(0);
> > - for (const Size &res : resolutions) {
> > - cfg.pixelFormat = pixelFormat;
> > - cfg.size = res;
> > -
> > - CameraConfiguration::Status status = cameraConfig->validate();
> > - if (status != CameraConfiguration::Valid) {
> > - LOG(HAL, Debug) << cfg.toString() << " not supported";
> > - continue;
> > - }
> > -
> > - LOG(HAL, Debug) << cfg.toString() << " supported";
> > -
> > - supportedResolutions.push_back(res);
> > - }
> > -
> > - return supportedResolutions;
> > -}
> > -
> > -std::vector<Size> CameraDevice::getRawResolutions(const libcamera::PixelFormat &pixelFormat)
> > -{
> > - std::unique_ptr<CameraConfiguration> cameraConfig =
> > - camera_->generateConfiguration({ StreamRole::Raw });
> > - StreamConfiguration &cfg = cameraConfig->at(0);
> > - const StreamFormats &formats = cfg.formats();
> > - std::vector<Size> supportedResolutions = formats.sizes(pixelFormat);
> > -
> > - return supportedResolutions;
> > -}
> > -
> > -/*
> > - * Initialize the format conversion map to translate from Android format
> > - * identifier to libcamera pixel formats and fill in the list of supported
> > - * stream configurations to be reported to the Android camera framework through
> > - * the static stream configuration metadata.
> > - */
> > -int CameraDevice::initializeStreamConfigurations()
> > -{
> > - /*
> > - * Get the maximum output resolutions
> > - * \todo Get this from the camera properties once defined
> > - */
> > - std::unique_ptr<CameraConfiguration> cameraConfig =
> > - camera_->generateConfiguration({ StillCapture });
> > - if (!cameraConfig) {
> > - LOG(HAL, Error) << "Failed to get maximum resolution";
> > - return -EINVAL;
> > - }
> > - StreamConfiguration &cfg = cameraConfig->at(0);
> > -
> > - /*
> > - * \todo JPEG - Adjust the maximum available resolution by taking the
> > - * JPEG encoder requirements into account (alignment and aspect ratio).
> > - */
> > - const Size maxRes = cfg.size;
> > - LOG(HAL, Debug) << "Maximum supported resolution: " << maxRes.toString();
> > -
> > - /*
> > - * Build the list of supported image resolutions.
> > - *
> > - * The resolutions listed in camera3Resolution are mandatory to be
> > - * supported, up to the camera maximum resolution.
> > - *
> > - * Augment the list by adding resolutions calculated from the camera
> > - * maximum one.
> > - */
> > - std::vector<Size> cameraResolutions;
> > - std::copy_if(camera3Resolutions.begin(), camera3Resolutions.end(),
> > - std::back_inserter(cameraResolutions),
> > - [&](const Size &res) { return res < maxRes; });
> > -
> > - /*
> > - * The Camera3 specification suggests adding 1/2 and 1/4 of the maximum
> > - * resolution.
> > - */
> > - for (unsigned int divider = 2;; divider <<= 1) {
> > - Size derivedSize{
> > - maxRes.width / divider,
> > - maxRes.height / divider,
> > - };
> > -
> > - if (derivedSize.width < 320 ||
> > - derivedSize.height < 240)
> > - break;
> > -
> > - cameraResolutions.push_back(derivedSize);
> > - }
> > - cameraResolutions.push_back(maxRes);
> > -
> > - /* Remove duplicated entries from the list of supported resolutions. */
> > - std::sort(cameraResolutions.begin(), cameraResolutions.end());
> > - auto last = std::unique(cameraResolutions.begin(), cameraResolutions.end());
> > - cameraResolutions.erase(last, cameraResolutions.end());
> > -
> > - /*
> > - * Build the list of supported camera formats.
> > - *
> > - * To each Android format a list of compatible libcamera formats is
> > - * associated. The first libcamera format that tests successful is added
> > - * to the format translation map used when configuring the streams.
> > - * It is then tested against the list of supported camera resolutions to
> > - * build the stream configuration map reported through the camera static
> > - * metadata.
> > - */
> > - Size maxJpegSize;
> > - for (const auto &format : camera3FormatsMap) {
> > - int androidFormat = format.first;
> > - const Camera3Format &camera3Format = format.second;
> > - const std::vector<PixelFormat> &libcameraFormats =
> > - camera3Format.libcameraFormats;
> > -
> > - LOG(HAL, Debug) << "Trying to map Android format "
> > - << camera3Format.name;
> > -
> > - /*
> > - * JPEG is always supported, either produced directly by the
> > - * camera, or encoded in the HAL.
> > - */
> > - if (androidFormat == HAL_PIXEL_FORMAT_BLOB) {
> > - formatsMap_[androidFormat] = formats::MJPEG;
> > - LOG(HAL, Debug) << "Mapped Android format "
> > - << camera3Format.name << " to "
> > - << formats::MJPEG.toString()
> > - << " (fixed mapping)";
> > - continue;
> > - }
> > -
> > - /*
> > - * Test the libcamera formats that can produce images
> > - * compatible with the format defined by Android.
> > - */
> > - PixelFormat mappedFormat;
> > - for (const PixelFormat &pixelFormat : libcameraFormats) {
> > -
> > - LOG(HAL, Debug) << "Testing " << pixelFormat.toString();
> > -
> > - /*
> > - * The stream configuration size can be adjusted,
> > - * not the pixel format.
> > - *
> > - * \todo This could be simplified once all pipeline
> > - * handlers will report the StreamFormats list of
> > - * supported formats.
> > - */
> > - cfg.pixelFormat = pixelFormat;
> > -
> > - CameraConfiguration::Status status = cameraConfig->validate();
> > - if (status != CameraConfiguration::Invalid &&
> > - cfg.pixelFormat == pixelFormat) {
> > - mappedFormat = pixelFormat;
> > - break;
> > - }
> > - }
> > -
> > - if (!mappedFormat.isValid()) {
> > - /* If the format is not mandatory, skip it. */
> > - if (!camera3Format.mandatory)
> > - continue;
> > -
> > - LOG(HAL, Error)
> > - << "Failed to map mandatory Android format "
> > - << camera3Format.name << " ("
> > - << utils::hex(androidFormat) << "): aborting";
> > - return -EINVAL;
> > - }
> > -
> > - /*
> > - * Record the mapping and then proceed to generate the
> > - * stream configurations map, by testing the image resolutions.
> > - */
> > - formatsMap_[androidFormat] = mappedFormat;
> > - LOG(HAL, Debug) << "Mapped Android format "
> > - << camera3Format.name << " to "
> > - << mappedFormat.toString();
> > -
> > - std::vector<Size> resolutions;
> > - const PixelFormatInfo &info = PixelFormatInfo::info(mappedFormat);
> > - if (info.colourEncoding == PixelFormatInfo::ColourEncodingRAW)
> > - resolutions = getRawResolutions(mappedFormat);
> > - else
> > - resolutions = getYUVResolutions(cameraConfig.get(),
> > - mappedFormat,
> > - cameraResolutions);
> > -
> > - for (const Size &res : resolutions) {
> > - streamConfigurations_.push_back({ res, androidFormat });
> > -
> > - /*
> > - * If the format is HAL_PIXEL_FORMAT_YCbCr_420_888
> > - * from which JPEG is produced, add an entry for
> > - * the JPEG stream.
> > - *
> > - * \todo Wire the JPEG encoder to query the supported
> > - * sizes provided a list of formats it can encode.
> > - *
> > - * \todo Support JPEG streams produced by the Camera
> > - * natively.
> > - */
> > - if (androidFormat == HAL_PIXEL_FORMAT_YCbCr_420_888) {
> > - streamConfigurations_.push_back(
> > - { res, HAL_PIXEL_FORMAT_BLOB });
> > - maxJpegSize = std::max(maxJpegSize, res);
> > - }
> > - }
> > -
> > - /*
> > - * \todo Calculate the maximum JPEG buffer size by asking the
> > - * encoder giving the maximum frame size required.
> > - */
> > - maxJpegBufferSize_ = maxJpegSize.width * maxJpegSize.height * 1.5;
> > - }
> > -
> > - LOG(HAL, Debug) << "Collected stream configuration map: ";
> > - for (const auto &entry : streamConfigurations_)
> > - LOG(HAL, Debug) << "{ " << entry.resolution.toString() << " - "
> > - << utils::hex(entry.androidFormat) << " }";
> > -
> > - return 0;
> > + return capabilities_.initialize(camera_, orientation_, facing_);
> > }
> >
> > /*
> > @@ -817,802 +490,19 @@ void CameraDevice::stop()
> > state_ = State::Stopped;
> > }
> >
> > -void CameraDevice::setCallbacks(const camera3_callback_ops_t *callbacks)
> > +unsigned int CameraDevice::maxJpegBufferSize() const
> > {
> > - callbacks_ = callbacks;
> > + return capabilities_.maxJpegBufferSize();
> > }
> >
> > -/*
> > - * Return static information for the camera.
> > - */
> > -const camera_metadata_t *CameraDevice::getStaticMetadata()
> > -{
> > - if (staticMetadata_)
> > - return staticMetadata_->get();
> > -
> > - staticMetadata_ = std::make_unique<CameraMetadata>(64, 1024);
> > - if (!staticMetadata_->isValid()) {
> > - LOG(HAL, Error) << "Failed to allocate static metadata";
> > - staticMetadata_.reset();
> > - return nullptr;
> > - }
> > -
> > - const ControlInfoMap &controlsInfo = camera_->controls();
> > - const ControlList &properties = camera_->properties();
> > -
> > - /* Color correction static metadata. */
> > - {
> > - std::vector<uint8_t> data;
> > - data.reserve(3);
> > - const auto &infoMap = controlsInfo.find(&controls::draft::ColorCorrectionAberrationMode);
> > - if (infoMap != controlsInfo.end()) {
> > - for (const auto &value : infoMap->second.values())
> > - data.push_back(value.get<int32_t>());
> > - } else {
> > - data.push_back(ANDROID_COLOR_CORRECTION_ABERRATION_MODE_OFF);
> > - }
> > - staticMetadata_->addEntry(ANDROID_COLOR_CORRECTION_AVAILABLE_ABERRATION_MODES,
> > - data);
> > - }
> > -
> > - /* Control static metadata. */
> > - std::vector<uint8_t> aeAvailableAntiBandingModes = {
> > - ANDROID_CONTROL_AE_ANTIBANDING_MODE_OFF,
> > - ANDROID_CONTROL_AE_ANTIBANDING_MODE_50HZ,
> > - ANDROID_CONTROL_AE_ANTIBANDING_MODE_60HZ,
> > - ANDROID_CONTROL_AE_ANTIBANDING_MODE_AUTO,
> > - };
> > - staticMetadata_->addEntry(ANDROID_CONTROL_AE_AVAILABLE_ANTIBANDING_MODES,
> > - aeAvailableAntiBandingModes);
> > -
> > - std::vector<uint8_t> aeAvailableModes = {
> > - ANDROID_CONTROL_AE_MODE_ON,
> > - };
> > - staticMetadata_->addEntry(ANDROID_CONTROL_AE_AVAILABLE_MODES,
> > - aeAvailableModes);
> > -
> > - int64_t minFrameDurationNsec = -1;
> > - int64_t maxFrameDurationNsec = -1;
> > - const auto frameDurationsInfo = controlsInfo.find(&controls::FrameDurationLimits);
> > - if (frameDurationsInfo != controlsInfo.end()) {
> > - minFrameDurationNsec = frameDurationsInfo->second.min().get<int64_t>() * 1000;
> > - maxFrameDurationNsec = frameDurationsInfo->second.max().get<int64_t>() * 1000;
> > -
> > - /*
> > - * Adjust the minimum frame duration to comply with Android
> > - * requirements. The camera service mandates all preview/record
> > - * streams to have a minimum frame duration < 33,366 milliseconds
> > - * (see MAX_PREVIEW_RECORD_DURATION_NS in the camera service
> > - * implementation).
> > - *
> > - * If we're close enough (+ 500 useconds) to that value, round
> > - * the minimum frame duration of the camera to an accepted
> > - * value.
> > - */
> > - static constexpr int64_t MAX_PREVIEW_RECORD_DURATION_NS = 1e9 / 29.97;
> > - if (minFrameDurationNsec > MAX_PREVIEW_RECORD_DURATION_NS &&
> > - minFrameDurationNsec < MAX_PREVIEW_RECORD_DURATION_NS + 500000)
> > - minFrameDurationNsec = MAX_PREVIEW_RECORD_DURATION_NS - 1000;
> > -
> > - /*
> > - * The AE routine frame rate limits are computed using the frame
> > - * duration limits, as libcamera clips the AE routine to the
> > - * frame durations.
> > - */
> > - int32_t maxFps = std::round(1e9 / minFrameDurationNsec);
> > - int32_t minFps = std::round(1e9 / maxFrameDurationNsec);
> > - minFps = std::max(1, minFps);
> > -
> > - /*
> > - * Force rounding errors so that we have the proper frame
> > - * durations for when we reuse these variables later
> > - */
> > - minFrameDurationNsec = 1e9 / maxFps;
> > - maxFrameDurationNsec = 1e9 / minFps;
> > -
> > - /*
> > - * Register to the camera service {min, max} and {max, max}
> > - * intervals as requested by the metadata documentation.
> > - */
> > - int32_t availableAeFpsTarget[] = {
> > - minFps, maxFps, maxFps, maxFps
> > - };
> > - staticMetadata_->addEntry(ANDROID_CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES,
> > - availableAeFpsTarget);
> > - }
> > -
> > - std::vector<int32_t> aeCompensationRange = {
> > - 0, 0,
> > - };
> > - staticMetadata_->addEntry(ANDROID_CONTROL_AE_COMPENSATION_RANGE,
> > - aeCompensationRange);
> > -
> > - const camera_metadata_rational_t aeCompensationStep[] = {
> > - { 0, 1 }
> > - };
> > - staticMetadata_->addEntry(ANDROID_CONTROL_AE_COMPENSATION_STEP,
> > - aeCompensationStep);
> > -
> > - std::vector<uint8_t> availableAfModes = {
> > - ANDROID_CONTROL_AF_MODE_OFF,
> > - };
> > - staticMetadata_->addEntry(ANDROID_CONTROL_AF_AVAILABLE_MODES,
> > - availableAfModes);
> > -
> > - std::vector<uint8_t> availableEffects = {
> > - ANDROID_CONTROL_EFFECT_MODE_OFF,
> > - };
> > - staticMetadata_->addEntry(ANDROID_CONTROL_AVAILABLE_EFFECTS,
> > - availableEffects);
> > -
> > - std::vector<uint8_t> availableSceneModes = {
> > - ANDROID_CONTROL_SCENE_MODE_DISABLED,
> > - };
> > - staticMetadata_->addEntry(ANDROID_CONTROL_AVAILABLE_SCENE_MODES,
> > - availableSceneModes);
> > -
> > - std::vector<uint8_t> availableStabilizationModes = {
> > - ANDROID_CONTROL_VIDEO_STABILIZATION_MODE_OFF,
> > - };
> > - staticMetadata_->addEntry(ANDROID_CONTROL_AVAILABLE_VIDEO_STABILIZATION_MODES,
> > - availableStabilizationModes);
> > -
> > - /*
> > - * \todo Inspect the Camera capabilities to report the available
> > - * AWB modes. Default to AUTO as CTS tests require it.
> > - */
> > - std::vector<uint8_t> availableAwbModes = {
> > - ANDROID_CONTROL_AWB_MODE_AUTO,
> > - };
> > - staticMetadata_->addEntry(ANDROID_CONTROL_AWB_AVAILABLE_MODES,
> > - availableAwbModes);
> > -
> > - std::vector<int32_t> availableMaxRegions = {
> > - 0, 0, 0,
> > - };
> > - staticMetadata_->addEntry(ANDROID_CONTROL_MAX_REGIONS,
> > - availableMaxRegions);
> > -
> > - std::vector<uint8_t> sceneModesOverride = {
> > - ANDROID_CONTROL_AE_MODE_ON,
> > - ANDROID_CONTROL_AWB_MODE_AUTO,
> > - ANDROID_CONTROL_AF_MODE_OFF,
> > - };
> > - staticMetadata_->addEntry(ANDROID_CONTROL_SCENE_MODE_OVERRIDES,
> > - sceneModesOverride);
> > -
> > - uint8_t aeLockAvailable = ANDROID_CONTROL_AE_LOCK_AVAILABLE_FALSE;
> > - staticMetadata_->addEntry(ANDROID_CONTROL_AE_LOCK_AVAILABLE,
> > - aeLockAvailable);
> > -
> > - uint8_t awbLockAvailable = ANDROID_CONTROL_AWB_LOCK_AVAILABLE_FALSE;
> > - staticMetadata_->addEntry(ANDROID_CONTROL_AWB_LOCK_AVAILABLE,
> > - awbLockAvailable);
> > -
> > - char availableControlModes = ANDROID_CONTROL_MODE_AUTO;
> > - staticMetadata_->addEntry(ANDROID_CONTROL_AVAILABLE_MODES,
> > - availableControlModes);
> > -
> > - /* JPEG static metadata. */
> > -
> > - /*
> > - * Create the list of supported thumbnail sizes by inspecting the
> > - * available JPEG resolutions collected in streamConfigurations_ and
> > - * generate one entry for each aspect ratio.
> > - *
> > - * The JPEG thumbnailer can freely scale, so pick an arbitrary
> > - * (160, 160) size as the bounding rectangle, which is then cropped to
> > - * the different supported aspect ratios.
> > - */
> > - constexpr Size maxJpegThumbnail(160, 160);
> > - std::vector<Size> thumbnailSizes;
> > - thumbnailSizes.push_back({ 0, 0 });
> > - for (const auto &entry : streamConfigurations_) {
> > - if (entry.androidFormat != HAL_PIXEL_FORMAT_BLOB)
> > - continue;
> > -
> > - Size thumbnailSize = maxJpegThumbnail
> > - .boundedToAspectRatio({ entry.resolution.width,
> > - entry.resolution.height });
> > - thumbnailSizes.push_back(thumbnailSize);
> > - }
> > -
> > - std::sort(thumbnailSizes.begin(), thumbnailSizes.end());
> > - auto last = std::unique(thumbnailSizes.begin(), thumbnailSizes.end());
> > - thumbnailSizes.erase(last, thumbnailSizes.end());
> > -
> > - /* Transform sizes in to a list of integers that can be consumed. */
> > - std::vector<int32_t> thumbnailEntries;
> > - thumbnailEntries.reserve(thumbnailSizes.size() * 2);
> > - for (const auto &size : thumbnailSizes) {
> > - thumbnailEntries.push_back(size.width);
> > - thumbnailEntries.push_back(size.height);
> > - }
> > - staticMetadata_->addEntry(ANDROID_JPEG_AVAILABLE_THUMBNAIL_SIZES,
> > - thumbnailEntries);
> > -
> > - staticMetadata_->addEntry(ANDROID_JPEG_MAX_SIZE, maxJpegBufferSize_);
> > -
> > - /* Sensor static metadata. */
> > - std::array<int32_t, 2> pixelArraySize;
> > - {
> > - const Size &size = properties.get(properties::PixelArraySize);
> > - pixelArraySize[0] = size.width;
> > - pixelArraySize[1] = size.height;
> > - staticMetadata_->addEntry(ANDROID_SENSOR_INFO_PIXEL_ARRAY_SIZE,
> > - pixelArraySize);
> > - }
> > -
> > - if (properties.contains(properties::UnitCellSize)) {
> > - const Size &cellSize = properties.get<Size>(properties::UnitCellSize);
> > - std::array<float, 2> physicalSize{
> > - cellSize.width * pixelArraySize[0] / 1e6f,
> > - cellSize.height * pixelArraySize[1] / 1e6f
> > - };
> > - staticMetadata_->addEntry(ANDROID_SENSOR_INFO_PHYSICAL_SIZE,
> > - physicalSize);
> > - }
> > -
> > - {
> > - const Span<const Rectangle> &rects =
> > - properties.get(properties::PixelArrayActiveAreas);
> > - std::vector<int32_t> data{
> > - static_cast<int32_t>(rects[0].x),
> > - static_cast<int32_t>(rects[0].y),
> > - static_cast<int32_t>(rects[0].width),
> > - static_cast<int32_t>(rects[0].height),
> > - };
> > - staticMetadata_->addEntry(ANDROID_SENSOR_INFO_ACTIVE_ARRAY_SIZE,
> > - data);
> > - }
> > -
> > - int32_t sensitivityRange[] = {
> > - 32, 2400,
> > - };
> > - staticMetadata_->addEntry(ANDROID_SENSOR_INFO_SENSITIVITY_RANGE,
> > - sensitivityRange);
> > -
> > - /* Report the color filter arrangement if the camera reports it. */
> > - if (properties.contains(properties::draft::ColorFilterArrangement)) {
> > - uint8_t filterArr = properties.get(properties::draft::ColorFilterArrangement);
> > - staticMetadata_->addEntry(ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT,
> > - filterArr);
> > - }
> > -
> > - const auto &exposureInfo = controlsInfo.find(&controls::ExposureTime);
> > - if (exposureInfo != controlsInfo.end()) {
> > - int64_t exposureTimeRange[2] = {
> > - exposureInfo->second.min().get<int32_t>() * 1000LL,
> > - exposureInfo->second.max().get<int32_t>() * 1000LL,
> > - };
> > - staticMetadata_->addEntry(ANDROID_SENSOR_INFO_EXPOSURE_TIME_RANGE,
> > - exposureTimeRange, 2);
> > - }
> > -
> > - staticMetadata_->addEntry(ANDROID_SENSOR_ORIENTATION, orientation_);
> > -
> > - std::vector<int32_t> testPatternModes = {
> > - ANDROID_SENSOR_TEST_PATTERN_MODE_OFF
> > - };
> > - const auto &testPatternsInfo =
> > - controlsInfo.find(&controls::draft::TestPatternMode);
> > - if (testPatternsInfo != controlsInfo.end()) {
> > - const auto &values = testPatternsInfo->second.values();
> > - ASSERT(!values.empty());
> > - for (const auto &value : values) {
> > - switch (value.get<int32_t>()) {
> > - case controls::draft::TestPatternModeOff:
> > - /*
> > - * ANDROID_SENSOR_TEST_PATTERN_MODE_OFF is
> > - * already in testPatternModes.
> > - */
> > - break;
> > -
> > - case controls::draft::TestPatternModeSolidColor:
> > - testPatternModes.push_back(
> > - ANDROID_SENSOR_TEST_PATTERN_MODE_SOLID_COLOR);
> > - break;
> > -
> > - case controls::draft::TestPatternModeColorBars:
> > - testPatternModes.push_back(
> > - ANDROID_SENSOR_TEST_PATTERN_MODE_COLOR_BARS);
> > - break;
> > -
> > - case controls::draft::TestPatternModeColorBarsFadeToGray:
> > - testPatternModes.push_back(
> > - ANDROID_SENSOR_TEST_PATTERN_MODE_COLOR_BARS_FADE_TO_GRAY);
> > - break;
> > -
> > - case controls::draft::TestPatternModePn9:
> > - testPatternModes.push_back(
> > - ANDROID_SENSOR_TEST_PATTERN_MODE_PN9);
> > - break;
> > -
> > - case controls::draft::TestPatternModeCustom1:
> > - /* We don't support this yet. */
> > - break;
> > -
> > - default:
> > - LOG(HAL, Error) << "Unknown test pattern mode: "
> > - << value.get<int32_t>();
> > - continue;
> > - }
> > - }
> > - }
> > - staticMetadata_->addEntry(ANDROID_SENSOR_AVAILABLE_TEST_PATTERN_MODES,
> > - testPatternModes);
> > -
> > - uint8_t timestampSource = ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE_UNKNOWN;
> > - staticMetadata_->addEntry(ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE,
> > - timestampSource);
> > -
> > - if (maxFrameDurationNsec > 0)
> > - staticMetadata_->addEntry(ANDROID_SENSOR_INFO_MAX_FRAME_DURATION,
> > - maxFrameDurationNsec);
> > -
> > - /* Statistics static metadata. */
> > - uint8_t faceDetectMode = ANDROID_STATISTICS_FACE_DETECT_MODE_OFF;
> > - staticMetadata_->addEntry(ANDROID_STATISTICS_INFO_AVAILABLE_FACE_DETECT_MODES,
> > - faceDetectMode);
> > -
> > - int32_t maxFaceCount = 0;
> > - staticMetadata_->addEntry(ANDROID_STATISTICS_INFO_MAX_FACE_COUNT,
> > - maxFaceCount);
> > -
> > - {
> > - std::vector<uint8_t> data;
> > - data.reserve(2);
> > - const auto &infoMap = controlsInfo.find(&controls::draft::LensShadingMapMode);
> > - if (infoMap != controlsInfo.end()) {
> > - for (const auto &value : infoMap->second.values())
> > - data.push_back(value.get<int32_t>());
> > - } else {
> > - data.push_back(ANDROID_STATISTICS_LENS_SHADING_MAP_MODE_OFF);
> > - }
> > - staticMetadata_->addEntry(ANDROID_STATISTICS_INFO_AVAILABLE_LENS_SHADING_MAP_MODES,
> > - data);
> > - }
> > -
> > - /* Sync static metadata. */
> > - int32_t maxLatency = ANDROID_SYNC_MAX_LATENCY_UNKNOWN;
> > - staticMetadata_->addEntry(ANDROID_SYNC_MAX_LATENCY, maxLatency);
> > -
> > - /* Flash static metadata. */
> > - char flashAvailable = ANDROID_FLASH_INFO_AVAILABLE_FALSE;
> > - staticMetadata_->addEntry(ANDROID_FLASH_INFO_AVAILABLE,
> > - flashAvailable);
> > -
> > - /* Lens static metadata. */
> > - std::vector<float> lensApertures = {
> > - 2.53 / 100,
> > - };
> > - staticMetadata_->addEntry(ANDROID_LENS_INFO_AVAILABLE_APERTURES,
> > - lensApertures);
> > -
> > - uint8_t lensFacing;
> > - switch (facing_) {
> > - default:
> > - case CAMERA_FACING_FRONT:
> > - lensFacing = ANDROID_LENS_FACING_FRONT;
> > - break;
> > - case CAMERA_FACING_BACK:
> > - lensFacing = ANDROID_LENS_FACING_BACK;
> > - break;
> > - case CAMERA_FACING_EXTERNAL:
> > - lensFacing = ANDROID_LENS_FACING_EXTERNAL;
> > - break;
> > - }
> > - staticMetadata_->addEntry(ANDROID_LENS_FACING, lensFacing);
> > -
> > - std::vector<float> lensFocalLengths = {
> > - 1,
> > - };
> > - staticMetadata_->addEntry(ANDROID_LENS_INFO_AVAILABLE_FOCAL_LENGTHS,
> > - lensFocalLengths);
> > -
> > - std::vector<uint8_t> opticalStabilizations = {
> > - ANDROID_LENS_OPTICAL_STABILIZATION_MODE_OFF,
> > - };
> > - staticMetadata_->addEntry(ANDROID_LENS_INFO_AVAILABLE_OPTICAL_STABILIZATION,
> > - opticalStabilizations);
> > -
> > - float hypeFocalDistance = 0;
> > - staticMetadata_->addEntry(ANDROID_LENS_INFO_HYPERFOCAL_DISTANCE,
> > - hypeFocalDistance);
> > -
> > - float minFocusDistance = 0;
> > - staticMetadata_->addEntry(ANDROID_LENS_INFO_MINIMUM_FOCUS_DISTANCE,
> > - minFocusDistance);
> > -
> > - /* Noise reduction modes. */
> > - {
> > - std::vector<uint8_t> data;
> > - data.reserve(5);
> > - const auto &infoMap = controlsInfo.find(&controls::draft::NoiseReductionMode);
> > - if (infoMap != controlsInfo.end()) {
> > - for (const auto &value : infoMap->second.values())
> > - data.push_back(value.get<int32_t>());
> > - } else {
> > - data.push_back(ANDROID_NOISE_REDUCTION_MODE_OFF);
> > - }
> > - staticMetadata_->addEntry(ANDROID_NOISE_REDUCTION_AVAILABLE_NOISE_REDUCTION_MODES,
> > - data);
> > - }
> > -
> > - /* Scaler static metadata. */
> > -
> > - /*
> > - * \todo The digital zoom factor is a property that depends on the
> > - * desired output configuration and the sensor frame size input to the
> > - * ISP. This information is not available to the Android HAL, not at
> > - * initialization time at least.
> > - *
> > - * As a workaround rely on pipeline handlers initializing the
> > - * ScalerCrop control with the camera default configuration and use the
> > - * maximum and minimum crop rectangles to calculate the digital zoom
> > - * factor.
> > - */
> > - float maxZoom = 1.0f;
> > - const auto scalerCrop = controlsInfo.find(&controls::ScalerCrop);
> > - if (scalerCrop != controlsInfo.end()) {
> > - Rectangle min = scalerCrop->second.min().get<Rectangle>();
> > - Rectangle max = scalerCrop->second.max().get<Rectangle>();
> > - maxZoom = std::min(1.0f * max.width / min.width,
> > - 1.0f * max.height / min.height);
> > - }
> > - staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_MAX_DIGITAL_ZOOM,
> > - maxZoom);
> > -
> > - std::vector<uint32_t> availableStreamConfigurations;
> > - availableStreamConfigurations.reserve(streamConfigurations_.size() * 4);
> > - for (const auto &entry : streamConfigurations_) {
> > - availableStreamConfigurations.push_back(entry.androidFormat);
> > - availableStreamConfigurations.push_back(entry.resolution.width);
> > - availableStreamConfigurations.push_back(entry.resolution.height);
> > - availableStreamConfigurations.push_back(
> > - ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT);
> > - }
> > - staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS,
> > - availableStreamConfigurations);
> > -
> > - std::vector<int64_t> availableStallDurations = {
> > - ANDROID_SCALER_AVAILABLE_FORMATS_BLOB, 2560, 1920, 33333333,
> > - };
> > - staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_STALL_DURATIONS,
> > - availableStallDurations);
> > -
> > - /* Use the minimum frame duration for all the YUV/RGB formats. */
> > - if (minFrameDurationNsec > 0) {
> > - std::vector<int64_t> minFrameDurations;
> > - minFrameDurations.reserve(streamConfigurations_.size() * 4);
> > - for (const auto &entry : streamConfigurations_) {
> > - minFrameDurations.push_back(entry.androidFormat);
> > - minFrameDurations.push_back(entry.resolution.width);
> > - minFrameDurations.push_back(entry.resolution.height);
> > - minFrameDurations.push_back(minFrameDurationNsec);
> > - }
> > - staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS,
> > - minFrameDurations);
> > - }
> > -
> > - uint8_t croppingType = ANDROID_SCALER_CROPPING_TYPE_CENTER_ONLY;
> > - staticMetadata_->addEntry(ANDROID_SCALER_CROPPING_TYPE, croppingType);
> > -
> > - /* Info static metadata. */
> > - uint8_t supportedHWLevel = ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_LIMITED;
> > - staticMetadata_->addEntry(ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL,
> > - supportedHWLevel);
> > -
> > - /* Request static metadata. */
> > - int32_t partialResultCount = 1;
> > - staticMetadata_->addEntry(ANDROID_REQUEST_PARTIAL_RESULT_COUNT,
> > - partialResultCount);
> > -
> > - {
> > - /* Default the value to 2 if not reported by the camera. */
> > - uint8_t maxPipelineDepth = 2;
> > - const auto &infoMap = controlsInfo.find(&controls::draft::PipelineDepth);
> > - if (infoMap != controlsInfo.end())
> > - maxPipelineDepth = infoMap->second.max().get<int32_t>();
> > - staticMetadata_->addEntry(ANDROID_REQUEST_PIPELINE_MAX_DEPTH,
> > - maxPipelineDepth);
> > - }
> > -
> > - /* LIMITED does not support reprocessing. */
> > - uint32_t maxNumInputStreams = 0;
> > - staticMetadata_->addEntry(ANDROID_REQUEST_MAX_NUM_INPUT_STREAMS,
> > - maxNumInputStreams);
> > -
> > - std::vector<uint8_t> availableCapabilities = {
> > - ANDROID_REQUEST_AVAILABLE_CAPABILITIES_BACKWARD_COMPATIBLE,
> > - };
> > -
> > - /* Report if camera supports RAW. */
> > - bool rawStreamAvailable = false;
> > - std::unique_ptr<CameraConfiguration> cameraConfig =
> > - camera_->generateConfiguration({ StreamRole::Raw });
> > - if (cameraConfig && !cameraConfig->empty()) {
> > - const PixelFormatInfo &info =
> > - PixelFormatInfo::info(cameraConfig->at(0).pixelFormat);
> > - /* Only advertise RAW support if RAW16 is possible. */
> > - if (info.colourEncoding == PixelFormatInfo::ColourEncodingRAW &&
> > - info.bitsPerPixel == 16) {
> > - rawStreamAvailable = true;
> > - availableCapabilities.push_back(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_RAW);
> > - }
> > - }
> > -
> > - /* Number of { RAW, YUV, JPEG } supported output streams */
> > - int32_t numOutStreams[] = { rawStreamAvailable, 2, 1 };
> > - staticMetadata_->addEntry(ANDROID_REQUEST_MAX_NUM_OUTPUT_STREAMS,
> > - numOutStreams);
> > -
> > - staticMetadata_->addEntry(ANDROID_REQUEST_AVAILABLE_CAPABILITIES,
> > - availableCapabilities);
> > -
> > - std::vector<int32_t> availableCharacteristicsKeys = {
> > - ANDROID_COLOR_CORRECTION_AVAILABLE_ABERRATION_MODES,
> > - ANDROID_CONTROL_AE_AVAILABLE_ANTIBANDING_MODES,
> > - ANDROID_CONTROL_AE_AVAILABLE_MODES,
> > - ANDROID_CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES,
> > - ANDROID_CONTROL_AE_COMPENSATION_RANGE,
> > - ANDROID_CONTROL_AE_COMPENSATION_STEP,
> > - ANDROID_CONTROL_AE_LOCK_AVAILABLE,
> > - ANDROID_CONTROL_AF_AVAILABLE_MODES,
> > - ANDROID_CONTROL_AVAILABLE_EFFECTS,
> > - ANDROID_CONTROL_AVAILABLE_MODES,
> > - ANDROID_CONTROL_AVAILABLE_SCENE_MODES,
> > - ANDROID_CONTROL_AVAILABLE_VIDEO_STABILIZATION_MODES,
> > - ANDROID_CONTROL_AWB_AVAILABLE_MODES,
> > - ANDROID_CONTROL_AWB_LOCK_AVAILABLE,
> > - ANDROID_CONTROL_MAX_REGIONS,
> > - ANDROID_CONTROL_SCENE_MODE_OVERRIDES,
> > - ANDROID_FLASH_INFO_AVAILABLE,
> > - ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL,
> > - ANDROID_JPEG_AVAILABLE_THUMBNAIL_SIZES,
> > - ANDROID_JPEG_MAX_SIZE,
> > - ANDROID_LENS_FACING,
> > - ANDROID_LENS_INFO_AVAILABLE_APERTURES,
> > - ANDROID_LENS_INFO_AVAILABLE_FOCAL_LENGTHS,
> > - ANDROID_LENS_INFO_AVAILABLE_OPTICAL_STABILIZATION,
> > - ANDROID_LENS_INFO_HYPERFOCAL_DISTANCE,
> > - ANDROID_LENS_INFO_MINIMUM_FOCUS_DISTANCE,
> > - ANDROID_NOISE_REDUCTION_AVAILABLE_NOISE_REDUCTION_MODES,
> > - ANDROID_REQUEST_AVAILABLE_CAPABILITIES,
> > - ANDROID_REQUEST_MAX_NUM_INPUT_STREAMS,
> > - ANDROID_REQUEST_MAX_NUM_OUTPUT_STREAMS,
> > - ANDROID_REQUEST_PARTIAL_RESULT_COUNT,
> > - ANDROID_REQUEST_PIPELINE_MAX_DEPTH,
> > - ANDROID_SCALER_AVAILABLE_MAX_DIGITAL_ZOOM,
> > - ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS,
> > - ANDROID_SCALER_AVAILABLE_STALL_DURATIONS,
> > - ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS,
> > - ANDROID_SCALER_CROPPING_TYPE,
> > - ANDROID_SENSOR_AVAILABLE_TEST_PATTERN_MODES,
> > - ANDROID_SENSOR_INFO_ACTIVE_ARRAY_SIZE,
> > - ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT,
> > - ANDROID_SENSOR_INFO_EXPOSURE_TIME_RANGE,
> > - ANDROID_SENSOR_INFO_MAX_FRAME_DURATION,
> > - ANDROID_SENSOR_INFO_PHYSICAL_SIZE,
> > - ANDROID_SENSOR_INFO_PIXEL_ARRAY_SIZE,
> > - ANDROID_SENSOR_INFO_SENSITIVITY_RANGE,
> > - ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE,
> > - ANDROID_SENSOR_ORIENTATION,
> > - ANDROID_STATISTICS_INFO_AVAILABLE_FACE_DETECT_MODES,
> > - ANDROID_STATISTICS_INFO_MAX_FACE_COUNT,
> > - ANDROID_SYNC_MAX_LATENCY,
> > - };
> > - staticMetadata_->addEntry(ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS,
> > - availableCharacteristicsKeys);
> > -
> > - std::vector<int32_t> availableRequestKeys = {
> > - ANDROID_COLOR_CORRECTION_ABERRATION_MODE,
> > - ANDROID_CONTROL_AE_ANTIBANDING_MODE,
> > - ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION,
> > - ANDROID_CONTROL_AE_LOCK,
> > - ANDROID_CONTROL_AE_MODE,
> > - ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER,
> > - ANDROID_CONTROL_AE_TARGET_FPS_RANGE,
> > - ANDROID_CONTROL_AF_MODE,
> > - ANDROID_CONTROL_AF_TRIGGER,
> > - ANDROID_CONTROL_AWB_LOCK,
> > - ANDROID_CONTROL_AWB_MODE,
> > - ANDROID_CONTROL_CAPTURE_INTENT,
> > - ANDROID_CONTROL_EFFECT_MODE,
> > - ANDROID_CONTROL_MODE,
> > - ANDROID_CONTROL_SCENE_MODE,
> > - ANDROID_CONTROL_VIDEO_STABILIZATION_MODE,
> > - ANDROID_FLASH_MODE,
> > - ANDROID_JPEG_ORIENTATION,
> > - ANDROID_JPEG_QUALITY,
> > - ANDROID_JPEG_THUMBNAIL_QUALITY,
> > - ANDROID_JPEG_THUMBNAIL_SIZE,
> > - ANDROID_LENS_APERTURE,
> > - ANDROID_LENS_OPTICAL_STABILIZATION_MODE,
> > - ANDROID_NOISE_REDUCTION_MODE,
> > - ANDROID_SCALER_CROP_REGION,
> > - ANDROID_STATISTICS_FACE_DETECT_MODE
> > - };
> > - staticMetadata_->addEntry(ANDROID_REQUEST_AVAILABLE_REQUEST_KEYS,
> > - availableRequestKeys);
> > -
> > - std::vector<int32_t> availableResultKeys = {
> > - ANDROID_COLOR_CORRECTION_ABERRATION_MODE,
> > - ANDROID_CONTROL_AE_ANTIBANDING_MODE,
> > - ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION,
> > - ANDROID_CONTROL_AE_LOCK,
> > - ANDROID_CONTROL_AE_MODE,
> > - ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER,
> > - ANDROID_CONTROL_AE_STATE,
> > - ANDROID_CONTROL_AE_TARGET_FPS_RANGE,
> > - ANDROID_CONTROL_AF_MODE,
> > - ANDROID_CONTROL_AF_STATE,
> > - ANDROID_CONTROL_AF_TRIGGER,
> > - ANDROID_CONTROL_AWB_LOCK,
> > - ANDROID_CONTROL_AWB_MODE,
> > - ANDROID_CONTROL_AWB_STATE,
> > - ANDROID_CONTROL_CAPTURE_INTENT,
> > - ANDROID_CONTROL_EFFECT_MODE,
> > - ANDROID_CONTROL_MODE,
> > - ANDROID_CONTROL_SCENE_MODE,
> > - ANDROID_CONTROL_VIDEO_STABILIZATION_MODE,
> > - ANDROID_FLASH_MODE,
> > - ANDROID_FLASH_STATE,
> > - ANDROID_JPEG_GPS_COORDINATES,
> > - ANDROID_JPEG_GPS_PROCESSING_METHOD,
> > - ANDROID_JPEG_GPS_TIMESTAMP,
> > - ANDROID_JPEG_ORIENTATION,
> > - ANDROID_JPEG_QUALITY,
> > - ANDROID_JPEG_SIZE,
> > - ANDROID_JPEG_THUMBNAIL_QUALITY,
> > - ANDROID_JPEG_THUMBNAIL_SIZE,
> > - ANDROID_LENS_APERTURE,
> > - ANDROID_LENS_FOCAL_LENGTH,
> > - ANDROID_LENS_OPTICAL_STABILIZATION_MODE,
> > - ANDROID_LENS_STATE,
> > - ANDROID_NOISE_REDUCTION_MODE,
> > - ANDROID_REQUEST_PIPELINE_DEPTH,
> > - ANDROID_SCALER_CROP_REGION,
> > - ANDROID_SENSOR_EXPOSURE_TIME,
> > - ANDROID_SENSOR_FRAME_DURATION,
> > - ANDROID_SENSOR_ROLLING_SHUTTER_SKEW,
> > - ANDROID_SENSOR_TEST_PATTERN_MODE,
> > - ANDROID_SENSOR_TIMESTAMP,
> > - ANDROID_STATISTICS_FACE_DETECT_MODE,
> > - ANDROID_STATISTICS_LENS_SHADING_MAP_MODE,
> > - ANDROID_STATISTICS_HOT_PIXEL_MAP_MODE,
> > - ANDROID_STATISTICS_SCENE_FLICKER,
> > - };
> > - staticMetadata_->addEntry(ANDROID_REQUEST_AVAILABLE_RESULT_KEYS,
> > - availableResultKeys);
> > -
> > - if (!staticMetadata_->isValid()) {
> > - LOG(HAL, Error) << "Failed to construct static metadata";
> > - staticMetadata_.reset();
> > - return nullptr;
> > - }
> > -
> > - if (staticMetadata_->resized()) {
> > - auto [entryCount, dataCount] = staticMetadata_->usage();
> > - LOG(HAL, Info)
> > - << "Static metadata resized: " << entryCount
> > - << " entries and " << dataCount << " bytes used";
> > - }
> > -
> > - return staticMetadata_->get();
> > -}
> > -
> > -std::unique_ptr<CameraMetadata> CameraDevice::requestTemplatePreview()
> > +void CameraDevice::setCallbacks(const camera3_callback_ops_t *callbacks)
> > {
> > - /*
> > - * \todo Keep this in sync with the actual number of entries.
> > - * Currently: 20 entries, 35 bytes
> > - */
> > - auto requestTemplate = std::make_unique<CameraMetadata>(21, 36);
> > - if (!requestTemplate->isValid()) {
> > - return nullptr;
> > - }
> > -
> > - /* Get the FPS range registered in the static metadata. */
> > - camera_metadata_ro_entry_t entry;
> > - bool found = staticMetadata_->getEntry(ANDROID_CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES,
> > - &entry);
> > - if (!found) {
> > - LOG(HAL, Error) << "Cannot create capture template without FPS range";
> > - return nullptr;
> > - }
> > -
> > - /*
> > - * Assume the AE_AVAILABLE_TARGET_FPS_RANGE static metadata
> > - * has been assembled as {{min, max} {max, max}}.
> > - */
> > - requestTemplate->addEntry(ANDROID_CONTROL_AE_TARGET_FPS_RANGE,
> > - entry.data.i32, 2);
> > -
> > - uint8_t aeMode = ANDROID_CONTROL_AE_MODE_ON;
> > - requestTemplate->addEntry(ANDROID_CONTROL_AE_MODE, aeMode);
> > -
> > - int32_t aeExposureCompensation = 0;
> > - requestTemplate->addEntry(ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION,
> > - aeExposureCompensation);
> > -
> > - uint8_t aePrecaptureTrigger = ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER_IDLE;
> > - requestTemplate->addEntry(ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER,
> > - aePrecaptureTrigger);
> > -
> > - uint8_t aeLock = ANDROID_CONTROL_AE_LOCK_OFF;
> > - requestTemplate->addEntry(ANDROID_CONTROL_AE_LOCK, aeLock);
> > -
> > - uint8_t aeAntibandingMode = ANDROID_CONTROL_AE_ANTIBANDING_MODE_AUTO;
> > - requestTemplate->addEntry(ANDROID_CONTROL_AE_ANTIBANDING_MODE,
> > - aeAntibandingMode);
> > -
> > - uint8_t afMode = ANDROID_CONTROL_AF_MODE_OFF;
> > - requestTemplate->addEntry(ANDROID_CONTROL_AF_MODE, afMode);
> > -
> > - uint8_t afTrigger = ANDROID_CONTROL_AF_TRIGGER_IDLE;
> > - requestTemplate->addEntry(ANDROID_CONTROL_AF_TRIGGER, afTrigger);
> > -
> > - uint8_t awbMode = ANDROID_CONTROL_AWB_MODE_AUTO;
> > - requestTemplate->addEntry(ANDROID_CONTROL_AWB_MODE, awbMode);
> > -
> > - uint8_t awbLock = ANDROID_CONTROL_AWB_LOCK_OFF;
> > - requestTemplate->addEntry(ANDROID_CONTROL_AWB_LOCK, awbLock);
> > -
> > - uint8_t flashMode = ANDROID_FLASH_MODE_OFF;
> > - requestTemplate->addEntry(ANDROID_FLASH_MODE, flashMode);
> > -
> > - uint8_t faceDetectMode = ANDROID_STATISTICS_FACE_DETECT_MODE_OFF;
> > - requestTemplate->addEntry(ANDROID_STATISTICS_FACE_DETECT_MODE,
> > - faceDetectMode);
> > -
> > - uint8_t noiseReduction = ANDROID_NOISE_REDUCTION_MODE_OFF;
> > - requestTemplate->addEntry(ANDROID_NOISE_REDUCTION_MODE,
> > - noiseReduction);
> > -
> > - uint8_t aberrationMode = ANDROID_COLOR_CORRECTION_ABERRATION_MODE_OFF;
> > - requestTemplate->addEntry(ANDROID_COLOR_CORRECTION_ABERRATION_MODE,
> > - aberrationMode);
> > -
> > - uint8_t controlMode = ANDROID_CONTROL_MODE_AUTO;
> > - requestTemplate->addEntry(ANDROID_CONTROL_MODE, controlMode);
> > -
> > - float lensAperture = 2.53 / 100;
> > - requestTemplate->addEntry(ANDROID_LENS_APERTURE, lensAperture);
> > -
> > - uint8_t opticalStabilization = ANDROID_LENS_OPTICAL_STABILIZATION_MODE_OFF;
> > - requestTemplate->addEntry(ANDROID_LENS_OPTICAL_STABILIZATION_MODE,
> > - opticalStabilization);
> > -
> > - uint8_t captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_PREVIEW;
> > - requestTemplate->addEntry(ANDROID_CONTROL_CAPTURE_INTENT,
> > - captureIntent);
> > -
> > - return requestTemplate;
> > + callbacks_ = callbacks;
> > }
> >
> > -std::unique_ptr<CameraMetadata> CameraDevice::requestTemplateVideo()
> > +const camera_metadata_t *CameraDevice::getStaticMetadata()
> > {
> > - std::unique_ptr<CameraMetadata> previewTemplate = requestTemplatePreview();
> > - if (!previewTemplate)
> > - return nullptr;
> > -
> > - /*
> > - * The video template requires a fixed FPS range. Everything else
> > - * stays the same as the preview template.
> > - */
> > - camera_metadata_ro_entry_t entry;
> > - staticMetadata_->getEntry(ANDROID_CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES,
> > - &entry);
> > -
> > - /*
> > - * Assume the AE_AVAILABLE_TARGET_FPS_RANGE static metadata
> > - * has been assembled as {{min, max} {max, max}}.
> > - */
> > - previewTemplate->updateEntry(ANDROID_CONTROL_AE_TARGET_FPS_RANGE,
> > - entry.data.i32 + 2, 2);
> > -
> > - return previewTemplate;
> > + return capabilities_.staticMetadata()->get();
> > }
> >
> > /*
> > @@ -1630,7 +520,7 @@ const camera_metadata_t *CameraDevice::constructDefaultRequestSettings(int type)
> > switch (type) {
> > case CAMERA3_TEMPLATE_PREVIEW:
> > captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_PREVIEW;
> > - requestTemplate = requestTemplatePreview();
> > + requestTemplate = capabilities_.requestTemplatePreview();
> > break;
> > case CAMERA3_TEMPLATE_STILL_CAPTURE:
> > /*
> > @@ -1638,15 +528,15 @@ const camera_metadata_t *CameraDevice::constructDefaultRequestSettings(int type)
> > * for the torch mode we currently do not support.
> > */
> > captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_STILL_CAPTURE;
> > - requestTemplate = requestTemplatePreview();
> > + requestTemplate = capabilities_.requestTemplatePreview();
> > break;
> > case CAMERA3_TEMPLATE_VIDEO_RECORD:
> > captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_VIDEO_RECORD;
> > - requestTemplate = requestTemplateVideo();
> > + requestTemplate = capabilities_.requestTemplateVideo();
> > break;
> > case CAMERA3_TEMPLATE_VIDEO_SNAPSHOT:
> > captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_VIDEO_SNAPSHOT;
> > - requestTemplate = requestTemplateVideo();
> > + requestTemplate = capabilities_.requestTemplateVideo();
> > break;
> > /* \todo Implement templates generation for the remaining use cases. */
> > case CAMERA3_TEMPLATE_ZERO_SHUTTER_LAG:
> > @@ -1668,19 +558,6 @@ const camera_metadata_t *CameraDevice::constructDefaultRequestSettings(int type)
> > return requestTemplates_[type]->get();
> > }
> >
> > -PixelFormat CameraDevice::toPixelFormat(int format) const
> > -{
> > - /* Translate Android format code to libcamera pixel format. */
> > - auto it = formatsMap_.find(format);
> > - if (it == formatsMap_.end()) {
> > - LOG(HAL, Error) << "Requested format " << utils::hex(format)
> > - << " not supported";
> > - return PixelFormat();
> > - }
> > -
> > - return it->second;
> > -}
> > -
> > /*
> > * Inspect the stream_list to produce a list of StreamConfiguration to
> > * be use to configure the Camera.
> > @@ -1727,7 +604,7 @@ int CameraDevice::configureStreams(camera3_stream_configuration_t *stream_list)
> > camera3_stream_t *stream = stream_list->streams[i];
> > Size size(stream->width, stream->height);
> >
> > - PixelFormat format = toPixelFormat(stream->format);
> > + PixelFormat format = capabilities_.toPixelFormat(stream->format);
> >
> > LOG(HAL, Info) << "Stream #" << i
> > << ", direction: " << stream->stream_type
> > diff --git a/src/android/camera_device.h b/src/android/camera_device.h
> > index 4aadb27c562c..090fe28a551e 100644
> > --- a/src/android/camera_device.h
> > +++ b/src/android/camera_device.h
> > @@ -10,14 +10,12 @@
> > #include <map>
> > #include <memory>
> > #include <mutex>
> > -#include <tuple>
> > #include <vector>
> >
> > #include <hardware/camera3.h>
> >
> > #include <libcamera/buffer.h>
> > #include <libcamera/camera.h>
> > -#include <libcamera/geometry.h>
> > #include <libcamera/request.h>
> > #include <libcamera/stream.h>
> >
> > @@ -26,6 +24,7 @@
> > #include "libcamera/internal/message.h"
> > #include "libcamera/internal/thread.h"
> >
> > +#include "camera_capabilities.h"
> > #include "camera_metadata.h"
> > #include "camera_stream.h"
> > #include "camera_worker.h"
> > @@ -57,7 +56,7 @@ public:
> > const std::string &model() const { return model_; }
> > int facing() const { return facing_; }
> > int orientation() const { return orientation_; }
> > - unsigned int maxJpegBufferSize() const { return maxJpegBufferSize_; }
> > + unsigned int maxJpegBufferSize() const;
> >
> > void setCallbacks(const camera3_callback_ops_t *callbacks);
> > const camera_metadata_t *getStaticMetadata();
> > @@ -86,11 +85,6 @@ private:
> > std::unique_ptr<CaptureRequest> request_;
> > };
> >
> > - struct Camera3StreamConfiguration {
> > - libcamera::Size resolution;
> > - int androidFormat;
> > - };
> > -
> > enum class State {
> > Stopped,
> > Flushing,
> > @@ -99,22 +93,11 @@ private:
> >
> > void stop();
> >
> > - int initializeStreamConfigurations();
> > - std::vector<libcamera::Size>
> > - getYUVResolutions(libcamera::CameraConfiguration *cameraConfig,
> > - const libcamera::PixelFormat &pixelFormat,
> > - const std::vector<libcamera::Size> &resolutions);
> > - std::vector<libcamera::Size>
> > - getRawResolutions(const libcamera::PixelFormat &pixelFormat);
> > -
> > libcamera::FrameBuffer *createFrameBuffer(const buffer_handle_t camera3buffer);
> > void abortRequest(camera3_capture_request_t *request);
> > void notifyShutter(uint32_t frameNumber, uint64_t timestamp);
> > void notifyError(uint32_t frameNumber, camera3_stream_t *stream,
> > camera3_error_msg_code code);
> > - std::unique_ptr<CameraMetadata> requestTemplatePreview();
> > - std::unique_ptr<CameraMetadata> requestTemplateVideo();
> > - libcamera::PixelFormat toPixelFormat(int format) const;
> > int processControls(Camera3RequestDescriptor *descriptor);
> > std::unique_ptr<CameraMetadata> getResultMetadata(
> > const Camera3RequestDescriptor &descriptor) const;
> > @@ -129,13 +112,11 @@ private:
> >
> > std::shared_ptr<libcamera::Camera> camera_;
> > std::unique_ptr<libcamera::CameraConfiguration> config_;
> > + CameraCapabilities capabilities_;
> >
> > - std::unique_ptr<CameraMetadata> staticMetadata_;
> > std::map<unsigned int, std::unique_ptr<CameraMetadata>> requestTemplates_;
> > const camera3_callback_ops_t *callbacks_;
> >
> > - std::vector<Camera3StreamConfiguration> streamConfigurations_;
> > - std::map<int, libcamera::PixelFormat> formatsMap_;
> > std::vector<CameraStream> streams_;
> >
> > libcamera::Mutex descriptorsMutex_; /* Protects descriptors_. */
> > @@ -147,8 +128,6 @@ private:
> > int facing_;
> > int orientation_;
> >
> > - unsigned int maxJpegBufferSize_;
> > -
> > CameraMetadata lastSettings_;
> > };
> >
> > diff --git a/src/android/meson.build b/src/android/meson.build
> > index 3893e5b5b832..e093aa2ec565 100644
> > --- a/src/android/meson.build
> > +++ b/src/android/meson.build
> > @@ -45,6 +45,7 @@ subdir('cros')
> > android_hal_sources = files([
> > 'camera3_hal.cpp',
> > 'camera_hal_manager.cpp',
> > + 'camera_capabilities.cpp',
>
> While at it, could you sort this alphabetically ?
>
Sure, maybe in a patch before this one.
Thanks
j
> > 'camera_device.cpp',
> > 'camera_hal_config.cpp',
> > 'camera_metadata.cpp',
>
> --
> Regards,
>
> Laurent Pinchart
More information about the libcamera-devel
mailing list