[libcamera-devel] [PATCH] ipa: raspberrypi: alcs: Limit the calculated lambda values

David Plowman david.plowman at raspberrypi.com
Mon Apr 4 17:42:56 CEST 2022


Hi Naush

Thanks for working on this!

On Mon, 4 Apr 2022 at 16:21, Naushir Patuck <naush at raspberrypi.com> wrote:
>
> Under the right circumstances, the alsc calculations could spread the colour
> errors across the entire image as lambda remains unbound. This would cause the
> corrected image chroma values to slowly drift to incorrect values.
>
> This change adds a config parameter (alcs.lambda_bound) that provides an upper

Strictly, I suppose that should be "alsc" rather than "alcs"...

However everything else looks good, so:

Reviewed-by: David Plowman <david.plowman at raspberrypi.com>

Thanks!
David

> and lower bound to the lambda value at every stage of the calculation. With this
> change, we now adjust the lambda values so that the average across the entire
> grid is 1 instead of normalising to the minimum value.
>
> Signed-off-by: Naushir Patuck <naush at raspberrypi.com>
> ---
>  src/ipa/raspberrypi/controller/rpi/alsc.cpp | 57 +++++++++++++++------
>  src/ipa/raspberrypi/controller/rpi/alsc.hpp |  1 +
>  2 files changed, 43 insertions(+), 15 deletions(-)
>
> diff --git a/src/ipa/raspberrypi/controller/rpi/alsc.cpp b/src/ipa/raspberrypi/controller/rpi/alsc.cpp
> index be3d1ae476cd..a88fee9f6d94 100644
> --- a/src/ipa/raspberrypi/controller/rpi/alsc.cpp
> +++ b/src/ipa/raspberrypi/controller/rpi/alsc.cpp
> @@ -149,6 +149,7 @@ void Alsc::Read(boost::property_tree::ptree const &params)
>         read_calibrations(config_.calibrations_Cb, params, "calibrations_Cb");
>         config_.default_ct = params.get<double>("default_ct", 4500.0);
>         config_.threshold = params.get<double>("threshold", 1e-3);
> +       config_.lambda_bound = params.get<double>("lambda_bound", 0.05);
>  }
>
>  static double get_ct(Metadata *metadata, double default_ct);
> @@ -610,30 +611,47 @@ static double compute_lambda_top_end(int i, double const M[XY][4],
>
>  // Gauss-Seidel iteration with over-relaxation.
>  static double gauss_seidel2_SOR(double const M[XY][4], double omega,
> -                               double lambda[XY])
> +                               double lambda[XY], double lambda_bound)
>  {
> +       const double min = 1 - lambda_bound, max = 1 + lambda_bound;
>         double old_lambda[XY];
>         int i;
>         for (i = 0; i < XY; i++)
>                 old_lambda[i] = lambda[i];
>         lambda[0] = compute_lambda_bottom_start(0, M, lambda);
> -       for (i = 1; i < X; i++)
> +       lambda[0] = std::clamp(lambda[0], min, max);
> +       for (i = 1; i < X; i++) {
>                 lambda[i] = compute_lambda_bottom(i, M, lambda);
> -       for (; i < XY - X; i++)
> +               lambda[i] = std::clamp(lambda[i], min, max);
> +       }
> +       for (; i < XY - X; i++) {
>                 lambda[i] = compute_lambda_interior(i, M, lambda);
> -       for (; i < XY - 1; i++)
> +               lambda[i] = std::clamp(lambda[i], min, max);
> +       }
> +       for (; i < XY - 1; i++) {
>                 lambda[i] = compute_lambda_top(i, M, lambda);
> +               lambda[i] = std::clamp(lambda[i], min, max);
> +       }
>         lambda[i] = compute_lambda_top_end(i, M, lambda);
> +       lambda[i] = std::clamp(lambda[i], min, max);
>         // Also solve the system from bottom to top, to help spread the updates
>         // better.
>         lambda[i] = compute_lambda_top_end(i, M, lambda);
> -       for (i = XY - 2; i >= XY - X; i--)
> +       lambda[i] = std::clamp(lambda[i], min, max);
> +       for (i = XY - 2; i >= XY - X; i--) {
>                 lambda[i] = compute_lambda_top(i, M, lambda);
> -       for (; i >= X; i--)
> +               lambda[i] = std::clamp(lambda[i], min, max);
> +       }
> +       for (; i >= X; i--) {
>                 lambda[i] = compute_lambda_interior(i, M, lambda);
> -       for (; i >= 1; i--)
> +               lambda[i] = std::clamp(lambda[i], min, max);
> +       }
> +       for (; i >= 1; i--) {
>                 lambda[i] = compute_lambda_bottom(i, M, lambda);
> +               lambda[i] = std::clamp(lambda[i], min, max);
> +       }
>         lambda[0] = compute_lambda_bottom_start(0, M, lambda);
> +       lambda[0] = std::clamp(lambda[0], min, max);
>         double max_diff = 0;
>         for (i = 0; i < XY; i++) {
>                 lambda[i] = old_lambda[i] + (lambda[i] - old_lambda[i]) * omega;
> @@ -653,15 +671,26 @@ static void normalise(double *ptr, size_t n)
>                 ptr[i] /= minval;
>  }
>
> +// Rescale the values so that the avarage value is 1.
> +static void reaverage(double *ptr, size_t n)
> +{
> +       double sum = 0;
> +       for (size_t i = 0; i < n; i++)
> +               sum += ptr[i];
> +       double ratio = 1 / (sum / n);
> +       for (size_t i = 0; i < n; i++)
> +               ptr[i] *= ratio;
> +}
> +
>  static void run_matrix_iterations(double const C[XY], double lambda[XY],
>                                   double const W[XY][4], double omega,
> -                                 int n_iter, double threshold)
> +                                 int n_iter, double threshold, double lambda_bound)
>  {
>         double M[XY][4];
>         construct_M(C, W, M);
>         double last_max_diff = std::numeric_limits<double>::max();
>         for (int i = 0; i < n_iter; i++) {
> -               double max_diff = fabs(gauss_seidel2_SOR(M, omega, lambda));
> +               double max_diff = fabs(gauss_seidel2_SOR(M, omega, lambda, lambda_bound));
>                 if (max_diff < threshold) {
>                         LOG(RPiAlsc, Debug)
>                                 << "Stop after " << i + 1 << " iterations";
> @@ -675,10 +704,8 @@ static void run_matrix_iterations(double const C[XY], double lambda[XY],
>                                 << last_max_diff << " to " << max_diff;
>                 last_max_diff = max_diff;
>         }
> -       // We're going to normalise the lambdas so the smallest is 1. Not sure
> -       // this is really necessary as they get renormalised later, but I
> -       // suppose it does stop these quantities from wandering off...
> -       normalise(lambda, XY);
> +       // We're going to normalise the lambdas so the total average is 1.
> +       reaverage(lambda, XY);
>  }
>
>  static void add_luminance_rb(double result[XY], double const lambda[XY],
> @@ -737,9 +764,9 @@ void Alsc::doAlsc()
>         compute_W(Cb, config_.sigma_Cb, Wb);
>         // Run Gauss-Seidel iterations over the resulting matrix, for R and B.
>         run_matrix_iterations(Cr, lambda_r_, Wr, config_.omega, config_.n_iter,
> -                             config_.threshold);
> +                             config_.threshold, config_.lambda_bound);
>         run_matrix_iterations(Cb, lambda_b_, Wb, config_.omega, config_.n_iter,
> -                             config_.threshold);
> +                             config_.threshold, config_.lambda_bound);
>         // Fold the calibrated gains into our final lambda values. (Note that on
>         // the next run, we re-start with the lambda values that don't have the
>         // calibration gains included.)
> diff --git a/src/ipa/raspberrypi/controller/rpi/alsc.hpp b/src/ipa/raspberrypi/controller/rpi/alsc.hpp
> index 9616b99ea7ca..d1dbe0d1d22d 100644
> --- a/src/ipa/raspberrypi/controller/rpi/alsc.hpp
> +++ b/src/ipa/raspberrypi/controller/rpi/alsc.hpp
> @@ -41,6 +41,7 @@ struct AlscConfig {
>         std::vector<AlscCalibration> calibrations_Cb;
>         double default_ct; // colour temperature if no metadata found
>         double threshold; // iteration termination threshold
> +       double lambda_bound; // upper/lower bound for lambda from a value of 1
>  };
>
>  class Alsc : public Algorithm
> --
> 2.25.1
>


More information about the libcamera-devel mailing list