[libcamera-devel] [PATCH v2 03/11] utils: libtuning: modules: alsc: Add raspberrypi ALSC module
Laurent Pinchart
laurent.pinchart at ideasonboard.com
Wed Nov 9 13:41:02 CET 2022
Hi Paul,
Thank you for the patch.
On Sat, Oct 22, 2022 at 03:23:02PM +0900, Paul Elder via libcamera-devel wrote:
> Add an ALSC module for Raspberry Pi.
>
> Signed-off-by: Paul Elder <paul.elder at ideasonboard.com>
Reviewed-by: Laurent Pinchart <laurent.pinchart at ideasonboard.com>
> ---
> New in v2
> ---
> .../tuning/libtuning/modules/alsc/__init__.py | 1 +
> .../libtuning/modules/alsc/raspberrypi.py | 246 ++++++++++++++++++
> 2 files changed, 247 insertions(+)
> create mode 100644 utils/tuning/libtuning/modules/alsc/raspberrypi.py
>
> diff --git a/utils/tuning/libtuning/modules/alsc/__init__.py b/utils/tuning/libtuning/modules/alsc/__init__.py
> index a8f28923..ef6300c2 100644
> --- a/utils/tuning/libtuning/modules/alsc/__init__.py
> +++ b/utils/tuning/libtuning/modules/alsc/__init__.py
> @@ -3,3 +3,4 @@
> # Copyright (C) 2022, Paul Elder <paul.elder at ideasonboard.com>
>
> from libtuning.modules.alsc.alsc import ALSC
> +from libtuning.modules.alsc.raspberrypi import ALSCRaspberryPi
> diff --git a/utils/tuning/libtuning/modules/alsc/raspberrypi.py b/utils/tuning/libtuning/modules/alsc/raspberrypi.py
> new file mode 100644
> index 00000000..bea1a9a9
> --- /dev/null
> +++ b/utils/tuning/libtuning/modules/alsc/raspberrypi.py
> @@ -0,0 +1,246 @@
> +# SPDX-License-Identifier: BSD-2-Clause
> +#
> +# Copyright (C) 2019, Raspberry Pi Ltd
> +# Copyright (C) 2022, Paul Elder <paul.elder at ideasonboard.com>
> +
> +from .alsc import ALSC
> +
> +import libtuning as lt
> +import libtuning.utils as utils
> +
> +from numbers import Number
> +import numpy as np
> +
> +
> +class ALSCRaspberryPi(ALSC):
> + hr_name = 'ALSC (Raspberry Pi)'
> + out_name = 'rpi.alsc'
> + # todo Do something with the compatible list
> + compatible = ['raspberrypi']
> +
> + def __init__(self, *,
> + do_color: lt.Param,
> + luminance_strength: lt.Param,
> + **kwargs):
> + super().__init__(**kwargs)
> +
> + self.do_color = do_color
> + self.luminance_strength = luminance_strength
> +
> + self.output_range = (0, 3.999)
> +
> + def _validate_config(self, config: dict) -> bool:
> + if self not in config:
> + utils.eprint(f'{self.type} not in config')
> + return False
> +
> + valid = True
> +
> + conf = config[self]
> +
> + lum_key = self.luminance_strength.name
> + color_key = self.do_color.name
> +
> + if lum_key not in conf and self.luminance_strength.is_required():
> + utils.eprint(f'{lum_key} is not in config')
> + valid = False
> +
> + if lum_key in conf and (conf[lum_key] < 0 or conf[lum_key] > 1):
> + utils.eprint(f'Warning: {lum_key} is not in range [0, 1]; defaulting to 0.5')
> +
> + if color_key not in conf and self.do_color.is_required():
> + utils.eprint(f'{color_key} is not in config')
> + valid = False
> +
> + return valid
> +
> + # @return Image color temperature, flattened array of red calibration table
> + # (containing {sector size} elements), flattened array of blue
> + # calibration table, flattened array of green calibration
> + # table
> +
> + def _do_single_alsc(self, image: lt.Image, do_alsc_colour: bool):
> + average_green = np.mean((image.channels[lt.Color.GR:lt.Color.GB + 1]), axis=0)
> +
> + cg, g = self._lsc_single_channel(average_green, image)
> +
> + if not do_alsc_colour:
> + return image.color, None, None, cg.flatten()
> +
> + cr, _ = self._lsc_single_channel(image.channels[lt.Color.R], image, g)
> + cb, _ = self._lsc_single_channel(image.channels[lt.Color.B], image, g)
> +
> + # todo implement debug
> +
> + return image.color, cr.flatten(), cb.flatten(), cg.flatten()
> +
> + # @return Red shading table, Blue shading table, Green shading table,
> + # number of images processed
> +
> + def _do_all_alsc(self, images: list, do_alsc_colour: bool, general_conf: dict) -> (list, list, list, Number, int):
> + # List of colour temperatures
> + list_col = []
> + # Associated calibration tables
> + list_cr = []
> + list_cb = []
> + list_cg = []
> + count = 0
> + for image in self._enumerate_alsc_images(images):
> + col, cr, cb, cg = self._do_single_alsc(image, do_alsc_colour)
> + list_col.append(col)
> + list_cr.append(cr)
> + list_cb.append(cb)
> + list_cg.append(cg)
> + count += 1
> +
> + # Convert to numpy array for data manipulation
> + list_col = np.array(list_col)
> + list_cr = np.array(list_cr)
> + list_cb = np.array(list_cb)
> + list_cg = np.array(list_cg)
> +
> + cal_cr_list = []
> + cal_cb_list = []
> +
> + # Note: Calculation of average corners and center of the shading tables
> + # has been removed (which ctt had, as it was being unused)
> +
> + # todo Handle the second green table
> +
> + # Average all values for luminance shading and return one table for all temperatures
> + lum_lut = list(utils.round_with_sigfigs(np.mean(list_cg, axis=0), self.output_range))
> +
> + if not do_alsc_colour:
> + return None, None, lum_lut, count
> +
> + for ct in sorted(set(list_col)):
> + # Average tables for the same colour temperature
> + indices = np.where(list_col == ct)
> + ct = int(ct)
> + t_r = utils.round_with_sigfigs(np.mean(list_cr[indices], axis=0),
> + self.output_range)
> + t_b = utils.round_with_sigfigs(np.mean(list_cb[indices], axis=0),
> + self.output_range)
> +
> + cr_dict = {
> + 'ct': ct,
> + 'table': list(t_r)
> + }
> + cb_dict = {
> + 'ct': ct,
> + 'table': list(t_b)
> + }
> + cal_cr_list.append(cr_dict)
> + cal_cb_list.append(cb_dict)
> +
> + return cal_cr_list, cal_cb_list, lum_lut, count
> +
> + # @brief Calculate sigma from two adjacent gain tables
> + def _calcSigma(self, g1, g2):
> + g1 = np.reshape(g1, self.sector_shape[::-1])
> + g2 = np.reshape(g2, self.sector_shape[::-1])
> +
> + # Apply gains to gain table
> + gg = g1 / g2
> + if np.mean(gg) < 1:
> + gg = 1 / gg
> +
> + # For each internal patch, compute average difference between it and
> + # its 4 neighbours, then append to list
> + diffs = []
> + for i in range(self.sector_shape[1] - 2):
> + for j in range(self.sector_shape[0] - 2):
> + # Indexing is incremented by 1 since all patches on borders are
> + # not counted
> + diff = np.abs(gg[i + 1][j + 1] - gg[i][j + 1])
> + diff += np.abs(gg[i + 1][j + 1] - gg[i + 2][j + 1])
> + diff += np.abs(gg[i + 1][j + 1] - gg[i + 1][j])
> + diff += np.abs(gg[i + 1][j + 1] - gg[i + 1][j + 2])
> + diffs.append(diff / 4)
> +
> + mean_diff = np.mean(diffs)
> + return(np.round(mean_diff, 5))
> +
> + # @brief Obtains sigmas for red and blue, effectively a measure of the
> + # 'error'
> + def _get_sigma(self, cal_cr_list, cal_cb_list):
> + # Provided colour alsc tables were generated for two different colour
> + # temperatures sigma is calculated by comparing two calibration temperatures
> + # adjacent in colour space
> +
> + color_temps = [cal['ct'] for cal in cal_cr_list]
> +
> + # Calculate sigmas for each adjacent color_temps and return worst one
> + sigma_rs = []
> + sigma_bs = []
> + for i in range(len(color_temps) - 1):
> + sigma_rs.append(self._calcSigma(cal_cr_list[i]['table'], cal_cr_list[i + 1]['table']))
> + sigma_bs.append(self._calcSigma(cal_cb_list[i]['table'], cal_cb_list[i + 1]['table']))
> +
> + # Return maximum sigmas, not necessarily from the same colour
> + # temperature interval
> + sigma_r = max(sigma_rs) if sigma_rs else 0.005
> + sigma_b = max(sigma_bs) if sigma_bs else 0.005
> +
> + return sigma_r, sigma_b
> +
> + def _process(self, args, config: dict, images: list, outputs: dict) -> dict:
> + output = {
> + 'omega': 1.3,
> + 'n_iter': 100,
> + 'luminance_strength': 0.7
> + }
> +
> + conf = config[self]
> + general_conf = config['general']
> +
> + do_alsc_colour = self.do_color.get_value(conf)
> +
> + # todo I have no idea where this input parameter is used
> + luminance_strength = self.luminance_strength.get_value(conf)
> + if luminance_strength < 0 or luminance_strength > 1:
> + luminance_strength = 0.5
> +
> + output['luminance_strength'] = luminance_strength
> +
> + # todo Validate images from greyscale camera and force grescale mode
> + # todo Debug functionality
> +
> + alsc_out = self._do_all_alsc(images, do_alsc_colour, general_conf)
> + # todo Handle the second green lut
> + cal_cr_list, cal_cb_list, luminance_lut, count = alsc_out
> +
> + if not do_alsc_colour:
> + output['luminance_lut'] = luminance_lut
> + output['n_iter'] = 0
> + return output
> +
> + output['calibrations_Cr'] = cal_cr_list
> + output['calibrations_Cb'] = cal_cb_list
> + output['luminance_lut'] = luminance_lut
> +
> + # The sigmas determine the strength of the adaptive algorithm, that
> + # cleans up any lens shading that has slipped through the alsc. These
> + # are determined by measuring a 'worst-case' difference between two
> + # alsc tables that are adjacent in colour space. If, however, only one
> + # colour temperature has been provided, then this difference can not be
> + # computed as only one table is available.
> + # To determine the sigmas you would have to estimate the error of an
> + # alsc table with only the image it was taken on as a check. To avoid
> + # circularity, dfault exaggerated sigmas are used, which can result in
> + # too much alsc and is therefore not advised.
> + # In general, just take another alsc picture at another colour
> + # temperature!
> +
> + if count == 1:
> + output['sigma'] = 0.005
> + output['sigma_Cb'] = 0.005
> + utils.eprint('Warning: Only one alsc calibration found; standard sigmas used for adaptive algorithm.')
> + return output
> +
> + # Obtain worst-case scenario residual sigmas
> + sigma_r, sigma_b = self._get_sigma(cal_cr_list, cal_cb_list)
> + output['sigma'] = np.round(sigma_r, 5)
> + output['sigma_Cb'] = np.round(sigma_b, 5)
> +
> + return output
--
Regards,
Laurent Pinchart
More information about the libcamera-devel
mailing list