[libcamera-devel] [PATCH v3 02/12] utils: tuning: libtuning: Implement math helpers

Laurent Pinchart laurent.pinchart at ideasonboard.com
Wed Nov 23 02:35:46 CET 2022


Hi Paul,

Thank you for the patch.

On Fri, Nov 11, 2022 at 02:31:44AM +0900, Paul Elder via libcamera-devel wrote:
> Implement math helpers for libtuning. This includes:
> - Average, a wrapper class for numpy averaging functions
> - Gradient, a class that represents gradients, for distributing and
>   mapping
> - Smoothing, a wrapper class for cv2 smoothing functions
> 
> Signed-off-by: Paul Elder <paul.elder at ideasonboard.com>
> 
> ---
> Changes in v3:
> - Newly split from the first patch "utils: tuning: libtuning: Implement
>   the core of libtuning"
>   - See changelog from that patch
> ---
>  utils/tuning/libtuning/average.py   | 21 ++++++++
>  utils/tuning/libtuning/gradient.py  | 75 +++++++++++++++++++++++++++++
>  utils/tuning/libtuning/smoothing.py | 24 +++++++++
>  3 files changed, 120 insertions(+)
>  create mode 100644 utils/tuning/libtuning/average.py
>  create mode 100644 utils/tuning/libtuning/gradient.py
>  create mode 100644 utils/tuning/libtuning/smoothing.py
> 
> diff --git a/utils/tuning/libtuning/average.py b/utils/tuning/libtuning/average.py
> new file mode 100644
> index 00000000..e28770d7
> --- /dev/null
> +++ b/utils/tuning/libtuning/average.py
> @@ -0,0 +1,21 @@
> +# SPDX-License-Identifier: GPL-2.0-or-later
> +#
> +# Copyright (C) 2022, Paul Elder <paul.elder at ideasonboard.com>
> +#
> +# average.py - Wrapper for numpy averaging functions to enable duck-typing
> +
> +import numpy as np
> +
> +
> +# @brief Wrapper for np averaging functions so that they can be duck-typed
> +class Average(object):
> +    def __init__(self):
> +        pass
> +
> +    def average(self, np_array):
> +        raise NotImplementedError
> +
> +
> +class Mean(Average):
> +    def average(self, np_array):
> +        return np.mean(np_array)
> diff --git a/utils/tuning/libtuning/gradient.py b/utils/tuning/libtuning/gradient.py
> new file mode 100644
> index 00000000..64a96369
> --- /dev/null
> +++ b/utils/tuning/libtuning/gradient.py
> @@ -0,0 +1,75 @@
> +# SPDX-License-Identifier: GPL-2.0-or-later
> +#
> +# Copyright (C) 2022, Paul Elder <paul.elder at ideasonboard.com>
> +#
> +# gradient.py - Gradients that can be used to distribute or map numbers
> +
> +import libtuning as lt
> +
> +import math
> +from numbers import Number
> +
> +
> +# @brief Gradient for how to allocate pixels to sectors
> +# @description There are no parameters for the gradients as the domain is the
> +#              number of pixels and the range is the number of sectors, and
> +#              there is only one curve that has a startpoint and endpoint at
> +#              (0, 0) and at (#pixels, #sectors). The exception is for curves
> +#              that *do* have multiple solutions for only two points, such as
> +#              gaussian, and curves of higher polynomial orders if we had them.
> +#
> +# \todo There will probably be a helper in the Gradient class, as I have a
> +# feeling that all the other curves (besides Linear and Gaussian) can be
> +# implemented in the same way.
> +class Gradient(object):
> +    def __init__(self):
> +        pass
> +
> +    # @brief Distribute pixels into sectors (only in one dimension)
> +    # @param domain Number of pixels
> +    # @param sectors Number of sectors
> +    # @return A list of number of pixels in each sector
> +    def distribute(self, domain: list, sectors: list, ) -> list:

Is the training ', ' a Python syntax I don't know about ?

Reviewed-by: Laurent Pinchart <laurent.pinchart at ideasonboard.com>

> +        raise NotImplementedError
> +
> +    # @brief Map a number on a curve
> +    # @param domain Domain of the curve
> +    # @param rang Range of the curve
> +    # @param x Input on the domain of the curve
> +    # @return y from the range of the curve
> +    def map(self, domain: tuple, rang: tuple, x: Number) -> Number:
> +        raise NotImplementedError
> +
> +
> +class Linear(Gradient):
> +    # @param remainder Mode of handling remainder
> +    def __init__(self, remainder: lt.Remainder = lt.Remainder.Float):
> +        self.remainder = remainder
> +
> +    def distribute(self, domain: list, sectors: list) -> list:
> +        size = domain / sectors
> +        rem = domain % sectors
> +
> +        if rem == 0:
> +            return [int(size)] * sectors
> +
> +        size = math.ceil(size)
> +        rem = domain % size
> +        output_sectors = [int(size)] * (sectors - 1)
> +
> +        if self.remainder == lt.Remainder.Float:
> +            size = domain / sectors
> +            output_sectors = [size] * sectors
> +        elif self.remainder == lt.Remainder.DistributeFront:
> +            output_sectors.append(int(rem))
> +        elif self.remainder == lt.Remainder.DistributeBack:
> +            output_sectors.insert(0, int(rem))
> +        else:
> +            raise ValueError
> +
> +        return output_sectors
> +
> +    def map(self, domain: tuple, rang: tuple, x: Number) -> Number:
> +        m = (rang[1] - rang[0]) / (domain[1] - domain[0])
> +        b = rang[0] - m * domain[0]
> +        return m * x + b
> diff --git a/utils/tuning/libtuning/smoothing.py b/utils/tuning/libtuning/smoothing.py
> new file mode 100644
> index 00000000..b8a5a242
> --- /dev/null
> +++ b/utils/tuning/libtuning/smoothing.py
> @@ -0,0 +1,24 @@
> +# SPDX-License-Identifier: GPL-2.0-or-later
> +#
> +# Copyright (C) 2022, Paul Elder <paul.elder at ideasonboard.com>
> +#
> +# smoothing.py - Wrapper for cv2 smoothing functions to enable duck-typing
> +
> +import cv2
> +
> +
> +# @brief Wrapper for cv2 smoothing functions so that they can be duck-typed
> +class Smoothing(object):
> +    def __init__(self):
> +        pass
> +
> +    def smoothing(self, src):
> +        raise NotImplementedError
> +
> +
> +class MedianBlur(Smoothing):
> +    def __init__(self, ksize):
> +        self.ksize = ksize
> +
> +    def smoothing(self, src):
> +        return cv2.medianBlur(src.astype('float32'), self.ksize).astype('float64')

-- 
Regards,

Laurent Pinchart


More information about the libcamera-devel mailing list