[libcamera-devel] [PATCH v2 01/11] utils: tuning: libtuning: Implement the core of libtuning

Paul Elder paul.elder at ideasonboard.com
Sat Oct 22 08:23:00 CEST 2022


Implement the core of libtuning, our new tuning tool infrastructure. It
leverages components from raspberrypi's ctt that could be reused for
tuning tools for other platforms.

Signed-off-by: Paul Elder <paul.elder at ideasonboard.com>

---
Changes in v2:
- fix all python errors
- fix style
- add SPDX and copyright
- remove validateConfig() from the base/abstract Module class
- actually append the image after loading, even if it's alsc_only
- s/average_functions/average/
- remove separate params field for Average and Smoothing
- move remainder parameter in Gradient to Linear, as it only applies to
  that
- from gradient.Linear, remove the remainders that I thought don't make
  sense
- add Float to gradient.Linear's remainder types, to divide everything
  in as a float; useful for rkisp1's sector sizes (the x-size and y-size
  tuning options)
- add a map function to Gradient, for mapping values onto a curve
- in Smoothing, move ksize to a constructor parameter
- remove brcm image loading
- move process_args from utils to libtuning
- move Module's type string and human-readble module name to class
  variable
- move locate_macbeth from utils to macbeth
- add out_name to Module, for the output to know what name to write for
  the key in the tuning output (eg. rkisp1 uses "LensShadingCorrection"
  while raspberrypi uses "rpi.alsc")
---
 utils/tuning/README.md                        |   7 +
 utils/tuning/libtuning/__init__.py            |  13 +
 utils/tuning/libtuning/average.py             |  22 +
 utils/tuning/libtuning/generators/__init__.py |   0
 .../tuning/libtuning/generators/generator.py  |  16 +
 utils/tuning/libtuning/gradient.py            | 109 ++++
 utils/tuning/libtuning/image.py               | 137 +++++
 utils/tuning/libtuning/libtuning.py           | 205 +++++++
 utils/tuning/libtuning/macbeth.py             | 505 ++++++++++++++++++
 utils/tuning/libtuning/macbeth_ref.pgm        |   6 +
 utils/tuning/libtuning/modules/__init__.py    |   0
 utils/tuning/libtuning/modules/module.py      |  48 ++
 utils/tuning/libtuning/parsers/__init__.py    |   0
 utils/tuning/libtuning/parsers/parser.py      |  22 +
 utils/tuning/libtuning/smoothing.py           |  25 +
 utils/tuning/libtuning/utils.py               | 151 ++++++
 16 files changed, 1266 insertions(+)
 create mode 100644 utils/tuning/README.md
 create mode 100644 utils/tuning/libtuning/__init__.py
 create mode 100644 utils/tuning/libtuning/average.py
 create mode 100644 utils/tuning/libtuning/generators/__init__.py
 create mode 100644 utils/tuning/libtuning/generators/generator.py
 create mode 100644 utils/tuning/libtuning/gradient.py
 create mode 100644 utils/tuning/libtuning/image.py
 create mode 100644 utils/tuning/libtuning/libtuning.py
 create mode 100644 utils/tuning/libtuning/macbeth.py
 create mode 100644 utils/tuning/libtuning/macbeth_ref.pgm
 create mode 100644 utils/tuning/libtuning/modules/__init__.py
 create mode 100644 utils/tuning/libtuning/modules/module.py
 create mode 100644 utils/tuning/libtuning/parsers/__init__.py
 create mode 100644 utils/tuning/libtuning/parsers/parser.py
 create mode 100644 utils/tuning/libtuning/smoothing.py
 create mode 100644 utils/tuning/libtuning/utils.py

diff --git a/utils/tuning/README.md b/utils/tuning/README.md
new file mode 100644
index 00000000..b17aa1b5
--- /dev/null
+++ b/utils/tuning/README.md
@@ -0,0 +1,7 @@
+# SPDX-License-Identifier: CC0-1.0
+
+Dependencies:
+- numpy
+- pyexiv2
+- rawpy
+- cv2
diff --git a/utils/tuning/libtuning/__init__.py b/utils/tuning/libtuning/__init__.py
new file mode 100644
index 00000000..93049976
--- /dev/null
+++ b/utils/tuning/libtuning/__init__.py
@@ -0,0 +1,13 @@
+# SPDX-License-Identifier: GPL-2.0-or-later
+#
+# Copyright (C) 2022, Paul Elder <paul.elder at ideasonboard.com>
+
+from libtuning.utils import *
+from libtuning.libtuning import *
+
+from libtuning.image import *
+from libtuning.macbeth import *
+
+from libtuning.average import *
+from libtuning.gradient import *
+from libtuning.smoothing import *
diff --git a/utils/tuning/libtuning/average.py b/utils/tuning/libtuning/average.py
new file mode 100644
index 00000000..5af1f629
--- /dev/null
+++ b/utils/tuning/libtuning/average.py
@@ -0,0 +1,22 @@
+# SPDX-License-Identifier: GPL-2.0-or-later
+#
+# Copyright (C) 2022, Paul Elder <paul.elder at ideasonboard.com>
+
+import numpy as np
+
+
+# @brief Wrapper for np averaging functions so that they can be duck-typed
+class Average(object):
+    def __init__(self):
+        return
+
+    def _average(self, np_array):
+        raise NotImplementedError
+
+    def average(self, np_array):
+        return self._average(np_array)
+
+
+class Mean(Average):
+    def _average(self, np_array):
+        return np.mean(np_array)
diff --git a/utils/tuning/libtuning/generators/__init__.py b/utils/tuning/libtuning/generators/__init__.py
new file mode 100644
index 00000000..e69de29b
diff --git a/utils/tuning/libtuning/generators/generator.py b/utils/tuning/libtuning/generators/generator.py
new file mode 100644
index 00000000..bfef030f
--- /dev/null
+++ b/utils/tuning/libtuning/generators/generator.py
@@ -0,0 +1,16 @@
+# SPDX-License-Identifier: GPL-2.0-or-later
+#
+# Copyright (C) 2022, Paul Elder <paul.elder at ideasonboard.com>
+
+from pathlib import Path
+
+
+class Generator(object):
+    def __init__(self):
+        return
+
+    def _write(self, output_file: Path, output_dict: dict, output_order: list):
+        raise NotImplementedError
+
+    def write(self, output_path: str, output_dict: dict, output_order: list):
+        return self._write(Path(output_path), output_dict, output_order)
diff --git a/utils/tuning/libtuning/gradient.py b/utils/tuning/libtuning/gradient.py
new file mode 100644
index 00000000..bde02af3
--- /dev/null
+++ b/utils/tuning/libtuning/gradient.py
@@ -0,0 +1,109 @@
+# SPDX-License-Identifier: GPL-2.0-or-later
+#
+# Copyright (C) 2022, Paul Elder <paul.elder at ideasonboard.com>
+
+import libtuning as lt
+
+import math
+from numbers import Number
+
+
+# @brief Gradient for how to allocate pixels to sectors
+# @description There are no parameters for the gradients as the domain is the
+#              number of pixels and the range is the number of sectors, and
+#              there is only one curve that has a startpoint and endpoint at
+#              (0, 0) and at (#pixels, #sectors). The exception is for curves
+#              that *do* have multiple solutions for only two points, such as
+#              gaussian, and curves of higher polynomial orders if we had them.
+#
+# todo There will probably be a helper in the Gradient class, as I have a
+# feeling that all the other curves (besides Linear and Gaussian) can be
+# implemented in the same way.
+class Gradient(object):
+    def __init__(self):
+        return
+
+    # @brief Distribute pixels into sectors (only in one dimension)
+    # @param domain Number of pixels
+    # @param sectors Number of sectors
+    # @return A list of number of pixels in each sector
+    def _distribute(self, domain: list, sectors: list) -> list:
+        raise NotImplementedError
+
+    def distribute(self, domain: list, sectors: list, ) -> list:
+        return self._distribute(domain, sectors)
+
+    # @brief Map a number on a curve
+    # @param domain Domain of the curve
+    # @param rang Range of the curve
+    # @param x Input on the domain of the curve
+    # @return y from the range of the curve
+    def _map(self, domain: tuple, rang: tuple, x: Number) -> Number:
+        raise NotImplementedError
+
+    def map(self, domain: tuple, rang: tuple, x: Number) -> Number:
+        return self._map(domain, rang, x)
+
+
+class Circular(Gradient):
+    def _distribute(self, domain, sectors):
+        raise NotImplementedError
+
+
+class Exponential(Gradient):
+    def _distribute(self, domain, sectors):
+        raise NotImplementedError
+
+
+class Gaussian(Gradient):
+    def _distribute(self, domain, sectors):
+        raise NotImplementedError
+
+
+class Hyperbolic(Gradient):
+    def _distribute(self, domain, sectors):
+        raise NotImplementedError
+
+
+class Linear(Gradient):
+    # @param remainder Mode of handling remainder
+    def __init__(self, remainder: lt.Remainder = lt.Remainder.Float):
+        self.remainder = remainder
+
+    def _distribute(self, domain, sectors):
+        size = domain / sectors
+        rem = domain % sectors
+
+        if rem == 0:
+            return [int(size) for i in range(sectors)]
+
+        size = math.ceil(size)
+        rem = domain % size
+        output_sectors = [int(size) for i in range(sectors - 1)]
+
+        if self.remainder == lt.Remainder.Float:
+            size = domain / sectors
+            output_sectors = [size for i in range(sectors)]
+        elif self.remainder == lt.Remainder.DistributeFront:
+            output_sectors.append(int(rem))
+        elif self.remainder == lt.Remainder.DistributeBack:
+            output_sectors.insert(0, int(rem))
+        else:
+            raise ValueError
+
+        return output_sectors
+
+    def _map(self, domain, rang, x):
+        m = (rang[1] - rang[0]) / (domain[1] - domain[0])
+        b = rang[0] - m * domain[0]
+        return m * x + b
+
+
+class Logarithmic(Gradient):
+    def _distribute(self, domain, sectors):
+        raise NotImplementedError
+
+
+class Parabolic(Gradient):
+    def _distribute(self, domain, sectors):
+        raise NotImplementedError
diff --git a/utils/tuning/libtuning/image.py b/utils/tuning/libtuning/image.py
new file mode 100644
index 00000000..88583170
--- /dev/null
+++ b/utils/tuning/libtuning/image.py
@@ -0,0 +1,137 @@
+# SPDX-License-Identifier: BSD-2-Clause
+#
+# Copyright (C) 2019, Raspberry Pi Ltd
+
+import binascii
+import numpy as np
+from pathlib import Path
+import pyexiv2 as pyexif
+import rawpy as raw
+import re
+
+import libtuning as lt
+import libtuning.utils as utils
+
+
+class Image:
+    def __init__(self, path: Path):
+        self.path = path
+        self.name = path.name
+        self.alsc_only = False
+        self.color = -1
+        self.lux = -1
+
+    # May raise KeyError as there are too many to check
+    def _load_metadata_exif(self):
+        # RawPy doesn't load all the image tags that we need, so we use py3exiv2
+        metadata = pyexif.ImageMetadata(str(self.path))
+        metadata.read()
+
+        self.ver = 100  # random value
+        # The DNG and TIFF/EP specifications use different IFDs to store the
+        # raw image data and the Exif tags. DNG stores them in a SubIFD and in
+        # an Exif IFD respectively (named "SubImage1" and "Photo" by pyexiv2),
+        # while TIFF/EP stores them both in IFD0 (name "Image"). Both are used
+        # in "DNG" files, with libcamera-apps following the DNG recommendation
+        # and applications based on picamera2 following TIFF/EP.
+        #
+        # This code detects which tags are being used, and therefore extracts the
+        # correct values.
+        try:
+            self.w = metadata['Exif.SubImage1.ImageWidth'].value
+            subimage = 'SubImage1'
+            photo = 'Photo'
+        except KeyError:
+            self.w = metadata['Exif.Image.ImageWidth'].value
+            subimage = 'Image'
+            photo = 'Image'
+        self.pad = 0
+        self.h = metadata[f'Exif.{subimage}.ImageLength'].value
+        white = metadata[f'Exif.{subimage}.WhiteLevel'].value
+        self.sigbits = int(white).bit_length()
+        self.fmt = (self.sigbits - 4) // 2
+        self.exposure = int(metadata[f'Exif.{photo}.ExposureTime'].value * 1000000)
+        self.againQ8 = metadata[f'Exif.{photo}.ISOSpeedRatings'].value * 256 / 100
+        self.againQ8_norm = self.againQ8 / 256
+        self.camName = metadata['Exif.Image.Model'].value
+        self.blacklevel = int(metadata[f'Exif.{subimage}.BlackLevel'].value[0])
+        self.blacklevel_16 = self.blacklevel << (16 - self.sigbits)
+
+        # Channel order depending on bayer pattern
+        # The key is the order given by exif, where 0 is R, 1 is G, and 2 is B
+        # The second value of the value is the index where the color can be
+        # found, where the first is R, then G, then G, then B.
+        # The first value of the value is probably just for consistency with
+        # the brcm loader.
+        bayer_case = {
+            '0 1 1 2': (0, (lt.Color.R, lt.Color.GR, lt.Color.GB, lt.Color.B)),
+            '1 2 0 1': (1, (lt.Color.GB, lt.Color.R, lt.Color.B, lt.Color.GR)),
+            '2 1 1 0': (2, (lt.Color.B, lt.Color.GB, lt.Color.GR, lt.Color.R)),
+            '1 0 2 1': (3, (lt.Color.GR, lt.Color.R, lt.Color.B, lt.Color.GB))
+        }
+        # Note: This needs to be in IFD0
+        cfa_pattern = metadata[f'Exif.{subimage}.CFAPattern'].value
+        self.pattern = bayer_case[cfa_pattern][0]
+        self.order = bayer_case[cfa_pattern][1]
+
+    def _read_image_dng(self):
+        raw_im = raw.imread(str(self.path))
+        raw_data = raw_im.raw_image
+        shift = 16 - self.sigbits
+        c0 = np.left_shift(raw_data[0::2, 0::2].astype(np.int64), shift)
+        c1 = np.left_shift(raw_data[0::2, 1::2].astype(np.int64), shift)
+        c2 = np.left_shift(raw_data[1::2, 0::2].astype(np.int64), shift)
+        c3 = np.left_shift(raw_data[1::2, 1::2].astype(np.int64), shift)
+        self.channels = [c0, c1, c2, c3]
+        # Reorder the channels into R, GR, GB, B
+        self.channels = [self.channels[i] for i in self.order]
+
+    def load_dng(self):
+        try:
+            self._load_metadata_exif()
+        except Exception as e:
+            utils.eprint(f'Failed to load metadata from {self.path}: {e}')
+            return False
+
+        try:
+            self._read_image_dng()
+        except Exception as e:
+            utils.eprint(f'Failed to load image data from {self.path}: {e}')
+            return False
+
+        return True
+
+    def get_patches(self, cen_coords, size=16):
+        ret = True
+
+        # Obtain channel widths and heights
+        ch_w, ch_h = self.w, self.h
+        cen_coords = list(np.array((cen_coords[0])).astype(np.int32))
+        self.cen_coords = cen_coords
+
+        # Squares are ordered by stacking macbeth chart columns from left to
+        # right. Some useful patch indices:
+        #     white = 3
+        #     black = 23
+        #     'reds' = 9, 10
+        #     'blues' = 2, 5, 8, 20, 22
+        #     'greens' = 6, 12, 17
+        #     greyscale = 3, 7, 11, 15, 19, 23
+        all_patches = []
+        for ch in self.channels:
+            ch_patches = []
+            for cen in cen_coords:
+                # Macbeth centre is placed at top left of central 2x2 patch to
+                # account for rounding Patch pixels are sorted by pixel
+                # brightness so spatial information is lost.
+                patch = ch[cen[1] - 7:cen[1] + 9, cen[0] - 7:cen[0] + 9].flatten()
+                patch.sort()
+                if patch[-5] == (2**self.sigbits - 1) * 2**(16 - self.sigbits):
+                    ret = False
+                ch_patches.append(patch)
+
+            all_patches.append(ch_patches)
+
+        self.patches = all_patches
+
+        return ret
diff --git a/utils/tuning/libtuning/libtuning.py b/utils/tuning/libtuning/libtuning.py
new file mode 100644
index 00000000..8149ba4d
--- /dev/null
+++ b/utils/tuning/libtuning/libtuning.py
@@ -0,0 +1,205 @@
+# SPDX-License-Identifier: GPL-2.0-or-later
+#
+# Copyright (C) 2022, Paul Elder <paul.elder at ideasonboard.com>
+
+import argparse
+
+import libtuning.utils as utils
+from libtuning.utils import eprint
+
+from enum import Enum, IntEnum
+
+
+class Color(IntEnum):
+    R = 0
+    GR = 1
+    GB = 2
+    B = 3
+    G = 4
+
+
+class Debug(Enum):
+    Plot = 1
+
+
+# @brief What to do with the leftover pixels after dividing them into ALSC
+#        sectors, when the division gradient is uniform
+# @var Float Force floating point division so all sectors divide equally
+# @var DistributeFront Divide the remainder equally (until running out,
+#      obviously) into the existing sectors, starting from the front
+# @var DistributeBack Same as DistributeFront but starting from the back
+class Remainder(Enum):
+    Float = 0
+    DistributeFront = 1
+    DistributeBack = 2
+
+
+# @brief A helper class to contain a default value for a module configuration
+# parameter
+class Param():
+    # @var Required The value contained in this instance is irrelevant, and the
+    #      value must be provided by the tuning configuration file.
+    # @var Optional If the value is not provided by the tuning configuration
+    #      file, then the value contained in this instance will be used instead.
+    # @var Hardcode The value contained in this instance will be used
+    class Mode(Enum):
+        Required = 0
+        Optional = 1
+        Hardcode = 2
+
+    # @param name Name of the parameter. Shall match the name used in the
+    #        configuration file for the parameter
+    # @param required Whether or not a value is required in the config
+    #        parameter of getVal()
+    # @param val Default value (only relevant if mode is Optional)
+    def __init__(self, name: str, required: Mode, val=None):
+        self.name = name
+        self.required = required
+        self.val = val
+
+    # todo Turn these into getters
+    def get_value(self, config: dict):
+        if self.required is self.Mode.Hardcode:
+            return self.val
+
+        if self.required is self.Mode.Required and self.name not in config:
+            raise ValueError(f'Parameter {self.name} is required but not provided in the configuration')
+
+        return config[self.name] if self.required is self.Mode.Required else self.val
+
+    def is_required(self):
+        return self.required is self.Mode.Required
+
+    # @brief Used by libtuning to auto-generate help information for the tuning
+    #        script on the available parameters for the configuration file
+    # todo implement this
+    def get_info(self):
+        raise NotImplementedError
+
+
+class Camera(object):
+
+    # External functions
+
+    def __init__(self, platform_name):
+        self.name = platform_name
+        self.modules = []
+        self.parser = None
+        self.generator = None
+        self.output_order = []
+        self.config = {}
+        self.output = {}
+        return
+
+    def add(self, module):
+        self.modules.append(module)
+        return
+
+    def setInputType(self, parser):
+        self.parser = parser()
+        return
+
+    def setOutputType(self, output):
+        self.generator = output()
+        return
+
+    def setOutputOrder(self, modules):
+        self.output_order = modules
+        return
+
+    # @brief Convert classes in self.output_order to the instances in self.modules
+    def _prepare_output_order(self):
+        output_order = self.output_order
+        self.output_order = []
+        for module_type in output_order:
+            modules = [module for module in self.modules if module.type == module_type.type]
+            if len(modules) > 1:
+                eprint(f'Multiple modules found for module type "{module_type.type}"')
+                return False
+            if len(modules) < 1:
+                eprint(f'No module found for module type "{module_type.type}"')
+                return False
+            self.output_order.append(modules[0])
+
+        return True
+
+    def _validate_settings(self):
+        if self.parser is None:
+            eprint('Missing parser')
+            return False
+
+        if self.generator is None:
+            eprint('Missing generator')
+            return False
+
+        if len(self.modules) == 0:
+            eprint('No modules added')
+            return False
+
+        if len(self.output_order) != len(self.modules):
+            eprint('Number of outputs does not match number of modules')
+            return False
+
+        return True
+
+    def _process_args(self, argv, platform_name):
+        parser = argparse.ArgumentParser(description=f'Camera Tuning for {platform_name}')
+        parser.add_argument('-i', '--input', type=str, required=True,
+                            help='''Directory containing calibration images (required).
+                                    Images for ALSC must be named "alsc_{Color Temperature}k_1[u].dng",
+                                    and all other images must be named "{Color Temperature}k_{Lux Level}l.dng"''')
+        parser.add_argument('-o', '--output', type=str, required=True,
+                            help='Output file (required)')
+        # It is not our duty to scan all modules to figure out their default
+        # options, so simply return an empty configuration if none is provided.
+        parser.add_argument('-c', '--config', type=str, default='',
+                            help='Config file (optional)')
+        # todo check if we really need this or if stderr is good enough, or if we
+        # want a better logging infrastructure with log levels
+        parser.add_argument('-l', '--log', type=str, default=None,
+                            help='Output log file (optional)')
+        return parser.parse_args(argv[1:])
+
+    def run(self, argv):
+        args = self._process_args(argv, self.name)
+        if args is None:
+            return -1
+
+        if not self._validate_settings():
+            return -1
+
+        if not self._prepare_output_order():
+            return -1
+
+        if len(args.config) > 0:
+            self.config, disable = self.parser.parse(args.config, self.modules)
+        else:
+            self.config = {'general': {}}
+            disable = []
+
+        for module in disable:
+            if module in self.modules:
+                self.modules.remove(module)
+
+        for module in self.modules:
+            if not module.validateConfig(self.config):
+                eprint(f'Config is invalid for module {module.type}')
+                return -1
+
+        images = utils.load_images(args.input, self.config, self.modules)
+        if images is None or len(images) == 0:
+            eprint(f'No images were found, or able to load')
+            return -1
+
+        # we need args for input image locations and debug options, and config
+        # for stuff like do_color and luminance_strength
+        for module in self.modules:
+            out = module.process(args, self.config, images, self.output)
+            if out is None:
+                eprint(f'Module {module.name} failed to process, aborting')
+                break
+            self.output[module] = out
+
+        self.generator.write(args.output, self.output, self.output_order)
+
+        return 0
diff --git a/utils/tuning/libtuning/macbeth.py b/utils/tuning/libtuning/macbeth.py
new file mode 100644
index 00000000..f8a054b5
--- /dev/null
+++ b/utils/tuning/libtuning/macbeth.py
@@ -0,0 +1,505 @@
+# SPDX-License-Identifier: BSD-2-Clause
+#
+# Copyright (C) 2019, Raspberry Pi Ltd
+#
+# (Copied from: ctt_macbeth_locator.py)
+# todo Add debugging
+
+import cv2
+import os
+from pathlib import Path
+
+from libtuning.image import Image
+
+
+# Reshape image to fixed width without distorting returns image and scale
+# factor
+def reshape(img, width):
+    factor = width / img.shape[0]
+    return cv2.resize(img, None, fx=factor, fy=factor), factor
+
+
+# @brief Compute coordinates of macbeth chart vertices and square centres,
+# @return (max_cor, best_map_col_norm, fit_coords, success)
+#
+# Also returns an error/success message for debugging purposes. Additionally,
+# it scores the match with a confidence value.
+#
+#    Brief explanation of the macbeth chart locating algorithm:
+#    - Find rectangles within image
+#    - Take rectangles within percentage offset of median perimeter. The
+#        assumption is that these will be the macbeth squares
+#    - For each potential square, find the 24 possible macbeth centre locations
+#        that would produce a square in that location
+#    - Find clusters of potential macbeth chart centres to find the potential
+#        macbeth centres with the most votes, i.e. the most likely ones
+#    - For each potential macbeth centre, use the centres of the squares that
+#        voted for it to find macbeth chart corners
+#    - For each set of corners, transform the possible match into normalised
+#        space and correlate with a reference chart to evaluate the match
+#    - Select the highest correlation as the macbeth chart match, returning the
+#        correlation as the confidence score
+#
+# todo: clean this up
+def get_macbeth_chart(img, ref_data):
+    (ref, ref_w, ref_h, ref_corns) = ref_data
+
+    # The code will raise and catch a MacbethError in case of a problem, trying
+    # to give some likely reasons why the problem occured, hence the try/except
+    try:
+        # Obtain image, convert to grayscale and normalise
+        src = img
+        src, factor = reshape(src, 200)
+        original = src.copy()
+        a = 125 / np.average(src)
+        src_norm = cv2.convertScaleAbs(src, alpha=a, beta=0)
+
+        # This code checks if there are seperate colour channels. In the past the
+        # macbeth locator ran on jpgs and this makes it robust to different
+        # filetypes. Note that running it on a jpg has 4x the pixels of the
+        # average bayer channel so coordinates must be doubled.
+
+        # This is best done in img_load.py in the get_patches method. The
+        # coordinates and image width, height must be divided by two if the
+        # macbeth locator has been run on a demosaicked image.
+        if len(src_norm.shape) == 3:
+            src_bw = cv2.cvtColor(src_norm, cv2.COLOR_BGR2GRAY)
+        else:
+            src_bw = src_norm
+        original_bw = src_bw.copy()
+
+        # Obtain image edges
+        sigma = 2
+        src_bw = cv2.GaussianBlur(src_bw, (0, 0), sigma)
+        t1, t2 = 50, 100
+        edges = cv2.Canny(src_bw, t1, t2)
+
+        # Dilate edges to prevent self-intersections in contours
+        k_size = 2
+        kernel = np.ones((k_size, k_size))
+        its = 1
+        edges = cv2.dilate(edges, kernel, iterations=its)
+
+        # Find contours in image
+        conts, _ = cv2.findContours(edges, cv2.RETR_TREE,
+                                    cv2.CHAIN_APPROX_NONE)
+        if len(conts) == 0:
+            raise MacbethError(
+                '\nWARNING: No macbeth chart found!'
+                '\nNo contours found in image\n'
+                'Possible problems:\n'
+                '- Macbeth chart is too dark or bright\n'
+                '- Macbeth chart is occluded\n'
+            )
+
+        # Find quadrilateral contours
+        epsilon = 0.07
+        conts_per = []
+        for i in range(len(conts)):
+            per = cv2.arcLength(conts[i], True)
+            poly = cv2.approxPolyDP(conts[i], epsilon * per, True)
+            if len(poly) == 4 and cv2.isContourConvex(poly):
+                conts_per.append((poly, per))
+
+        if len(conts_per) == 0:
+            raise MacbethError(
+                '\nWARNING: No macbeth chart found!'
+                '\nNo quadrilateral contours found'
+                '\nPossible problems:\n'
+                '- Macbeth chart is too dark or bright\n'
+                '- Macbeth chart is occluded\n'
+                '- Macbeth chart is out of camera plane\n'
+            )
+
+        # Sort contours by perimeter and get perimeters within percent of median
+        conts_per = sorted(conts_per, key=lambda x: x[1])
+        med_per = conts_per[int(len(conts_per) / 2)][1]
+        side = med_per / 4
+        perc = 0.1
+        med_low, med_high = med_per * (1 - perc), med_per * (1 + perc)
+        squares = []
+        for i in conts_per:
+            if med_low <= i[1] and med_high >= i[1]:
+                squares.append(i[0])
+
+        # Obtain coordinates of nomralised macbeth and squares
+        square_verts, mac_norm = get_square_verts(0.06)
+        # For each square guess, find 24 possible macbeth chart centres
+        mac_mids = []
+        squares_raw = []
+        for i in range(len(squares)):
+            square = squares[i]
+            squares_raw.append(square)
+
+            # Convert quads to rotated rectangles. This is required as the
+            # 'squares' are usually quite irregular quadrilaterls, so
+            # performing a transform would result in exaggerated warping and
+            # inaccurate macbeth chart centre placement
+            rect = cv2.minAreaRect(square)
+            square = cv2.boxPoints(rect).astype(np.float32)
+
+            # Reorder vertices to prevent 'hourglass shape'
+            square = sorted(square, key=lambda x: x[0])
+            square_1 = sorted(square[:2], key=lambda x: x[1])
+            square_2 = sorted(square[2:], key=lambda x: -x[1])
+            square = np.array(np.concatenate((square_1, square_2)), np.float32)
+            square = np.reshape(square, (4, 2)).astype(np.float32)
+            squares[i] = square
+
+            # Find 24 possible macbeth chart centres by trasnforming normalised
+            # macbeth square vertices onto candidate square vertices found in image
+            for j in range(len(square_verts)):
+                verts = square_verts[j]
+                p_mat = cv2.getPerspectiveTransform(verts, square)
+                mac_guess = cv2.perspectiveTransform(mac_norm, p_mat)
+                mac_guess = np.round(mac_guess).astype(np.int32)
+
+                mac_mid = np.mean(mac_guess, axis=1)
+                mac_mids.append([mac_mid, (i, j)])
+
+        if len(mac_mids) == 0:
+            raise MacbethError(
+                '\nWARNING: No macbeth chart found!'
+                '\nNo possible macbeth charts found within image'
+                '\nPossible problems:\n'
+                '- Part of the macbeth chart is outside the image\n'
+                '- Quadrilaterals in image background\n'
+            )
+
+        # Reshape data
+        for i in range(len(mac_mids)):
+            mac_mids[i][0] = mac_mids[i][0][0]
+
+        # Find where midpoints cluster to identify most likely macbeth centres
+        clustering = cluster.AgglomerativeClustering(
+            n_clusters=None,
+            compute_full_tree=True,
+            distance_threshold=side * 2
+        )
+        mac_mids_list = [x[0] for x in mac_mids]
+
+        if len(mac_mids_list) == 1:
+            # Special case of only one valid centre found (probably not needed)
+            clus_list = []
+            clus_list.append([mac_mids, len(mac_mids)])
+
+        else:
+            clustering.fit(mac_mids_list)
+
+            # Create list of all clusters
+            clus_list = []
+            if clustering.n_clusters_ > 1:
+                for i in range(clustering.labels_.max() + 1):
+                    indices = [j for j, x in enumerate(clustering.labels_) if x == i]
+                    clus = []
+                    for index in indices:
+                        clus.append(mac_mids[index])
+                    clus_list.append([clus, len(clus)])
+                clus_list.sort(key=lambda x: -x[1])
+
+            elif clustering.n_clusters_ == 1:
+                # Special case of only one cluster found
+                clus_list.append([mac_mids, len(mac_mids)])
+            else:
+                raise MacbethError(
+                    '\nWARNING: No macebth chart found!'
+                    '\nNo clusters found'
+                    '\nPossible problems:\n'
+                    '- NA\n'
+                )
+
+        # Keep only clusters with enough votes
+        clus_len_max = clus_list[0][1]
+        clus_tol = 0.7
+        for i in range(len(clus_list)):
+            if clus_list[i][1] < clus_len_max * clus_tol:
+                clus_list = clus_list[:i]
+                break
+            cent = np.mean(clus_list[i][0], axis=0)[0]
+            clus_list[i].append(cent)
+
+        # Get centres of each normalised square
+        reference = get_square_centres(0.06)
+
+        # For each possible macbeth chart, transform image into
+        # normalised space and find correlation with reference
+        max_cor = 0
+        best_map = None
+        best_fit = None
+        best_cen_fit = None
+        best_ref_mat = None
+
+        for clus in clus_list:
+            clus = clus[0]
+            sq_cents = []
+            ref_cents = []
+            i_list = [p[1][0] for p in clus]
+            for point in clus:
+                i, j = point[1]
+
+                # Remove any square that voted for two different points within
+                # the same cluster. This causes the same point in the image to be
+                # mapped to two different reference square centres, resulting in
+                # a very distorted perspective transform since cv2.findHomography
+                # simply minimises error.
+                # This phenomenon is not particularly likely to occur due to the
+                # enforced distance threshold in the clustering fit but it is
+                # best to keep this in just in case.
+                if i_list.count(i) == 1:
+                    square = squares_raw[i]
+                    sq_cent = np.mean(square, axis=0)
+                    ref_cent = reference[j]
+                    sq_cents.append(sq_cent)
+                    ref_cents.append(ref_cent)
+
+                    # At least four squares need to have voted for a centre in
+                    # order for a transform to be found
+            if len(sq_cents) < 4:
+                raise MacbethError(
+                    '\nWARNING: No macbeth chart found!'
+                    '\nNot enough squares found'
+                    '\nPossible problems:\n'
+                    '- Macbeth chart is occluded\n'
+                    '- Macbeth chart is too dark of bright\n'
+                )
+
+            ref_cents = np.array(ref_cents)
+            sq_cents = np.array(sq_cents)
+
+            # Find best fit transform from normalised centres to image
+            h_mat, mask = cv2.findHomography(ref_cents, sq_cents)
+            if 'None' in str(type(h_mat)):
+                raise MacbethError(
+                    '\nERROR\n'
+                )
+
+            # Transform normalised corners and centres into image space
+            mac_fit = cv2.perspectiveTransform(mac_norm, h_mat)
+            mac_cen_fit = cv2.perspectiveTransform(np.array([reference]), h_mat)
+
+            # Transform located corners into reference space
+            ref_mat = cv2.getPerspectiveTransform(
+                mac_fit,
+                np.array([ref_corns])
+            )
+            map_to_ref = cv2.warpPerspective(
+                original_bw, ref_mat,
+                (ref_w, ref_h)
+            )
+
+            # Normalise brigthness
+            a = 125 / np.average(map_to_ref)
+            map_to_ref = cv2.convertScaleAbs(map_to_ref, alpha=a, beta=0)
+
+            # Find correlation with bw reference macbeth
+            cor = correlate(map_to_ref, ref)
+
+            # Keep only if best correlation
+            if cor > max_cor:
+                max_cor = cor
+                best_map = map_to_ref
+                best_fit = mac_fit
+                best_cen_fit = mac_cen_fit
+                best_ref_mat = ref_mat
+
+            # Rotate macbeth by pi and recorrelate in case macbeth chart is
+            # upside-down
+            mac_fit_inv = np.array(
+                ([[mac_fit[0][2], mac_fit[0][3],
+                  mac_fit[0][0], mac_fit[0][1]]])
+            )
+            mac_cen_fit_inv = np.flip(mac_cen_fit, axis=1)
+            ref_mat = cv2.getPerspectiveTransform(
+                mac_fit_inv,
+                np.array([ref_corns])
+            )
+            map_to_ref = cv2.warpPerspective(
+                original_bw, ref_mat,
+                (ref_w, ref_h)
+            )
+            a = 125 / np.average(map_to_ref)
+            map_to_ref = cv2.convertScaleAbs(map_to_ref, alpha=a, beta=0)
+            cor = correlate(map_to_ref, ref)
+            if cor > max_cor:
+                max_cor = cor
+                best_map = map_to_ref
+                best_fit = mac_fit_inv
+                best_cen_fit = mac_cen_fit_inv
+                best_ref_mat = ref_mat
+
+        # Check best match is above threshold
+        cor_thresh = 0.6
+        if max_cor < cor_thresh:
+            raise MacbethError(
+                '\nWARNING: Correlation too low'
+                '\nPossible problems:\n'
+                '- Bad lighting conditions\n'
+                '- Macbeth chart is occluded\n'
+                '- Background is too noisy\n'
+                '- Macbeth chart is out of camera plane\n'
+            )
+
+        # Represent coloured macbeth in reference space
+        best_map_col = cv2.warpPerspective(
+            original, best_ref_mat, (ref_w, ref_h)
+        )
+        best_map_col = cv2.resize(
+            best_map_col, None, fx=4, fy=4
+        )
+        a = 125 / np.average(best_map_col)
+        best_map_col_norm = cv2.convertScaleAbs(
+            best_map_col, alpha=a, beta=0
+        )
+
+        # Rescale coordinates to original image size
+        fit_coords = (best_fit / factor, best_cen_fit / factor)
+
+        return(max_cor, best_map_col_norm, fit_coords, True)
+
+    # Catch macbeth errors and continue with code
+    except MacbethError as error:
+        eprint(error)
+        return(0, None, None, False)
+
+
+def find_macbeth(img, mac_config):
+    small_chart = mac_config['small']
+    show = mac_config['show']
+
+    # Catch the warnings
+    warnings.simplefilter("ignore")
+    warnings.warn("runtime", RuntimeWarning)
+
+    # Reference macbeth chart is created that will be correlated with the
+    # located macbeth chart guess to produce a confidence value for the match.
+    script_dir = Path(os.path.realpath(os.path.dirname(__file__)))
+    macbeth_ref_path = script_dir.joinpath('macbeth_ref.pgm')
+    ref = cv2.imread(str(macbeth_ref_path), flags=cv2.IMREAD_GRAYSCALE)
+    ref_w = 120
+    ref_h = 80
+    rc1 = (0, 0)
+    rc2 = (0, ref_h)
+    rc3 = (ref_w, ref_h)
+    rc4 = (ref_w, 0)
+    ref_corns = np.array((rc1, rc2, rc3, rc4), np.float32)
+    ref_data = (ref, ref_w, ref_h, ref_corns)
+
+    # Locate macbeth chart
+    cor, mac, coords, ret = get_macbeth_chart(img, ref_data)
+
+    # Following bits of code try to fix common problems with simple techniques.
+    # If now or at any point the best correlation is of above 0.75, then
+    # nothing more is tried as this is a high enough confidence to ensure
+    # reliable macbeth square centre placement.
+
+    for brightness in [2, 4]:
+        if cor >= 0.75:
+            break
+        img_br = cv2.convertScaleAbs(img, alpha=brightness, beta=0)
+        cor_b, mac_b, coords_b, ret_b = get_macbeth_chart(img_br, ref_data)
+        if cor_b > cor:
+            cor, mac, coords, ret = cor_b, mac_b, coords_b, ret_b
+
+    # In case macbeth chart is too small, take a selection of the image and
+    # attempt to locate macbeth chart within that. The scale increment is
+    # root 2
+
+    # These variables will be used to transform the found coordinates at
+    # smaller scales back into the original. If ii is still -1 after this
+    # section that means it was not successful
+    ii = -1
+    w_best = 0
+    h_best = 0
+    d_best = 100
+
+    # d_best records the scale of the best match. Macbeth charts are only looked
+    # for at one scale increment smaller than the current best match in order to avoid
+    # unecessarily searching for macbeth charts at small scales.
+    # If a macbeth chart ha already been found then set d_best to 0
+    if cor != 0:
+        d_best = 0
+
+    for index, pair in enumerate([{'sel': 2 / 3, 'inc': 1 / 6},
+                                  {'sel': 1 / 2, 'inc': 1 / 8},
+                                  {'sel': 1 / 3, 'inc': 1 / 12},
+                                  {'sel': 1 / 4, 'inc': 1 / 16}]):
+        if cor >= 0.75:
+            break
+
+        # Check if we need to check macbeth charts at even smaller scales. This
+        # slows the code down significantly and has therefore been omitted by
+        # default, however it is not unusably slow so might be useful if the
+        # macbeth chart is too small to be picked up to by the current
+        # subselections.  Use this for macbeth charts with side lengths around
+        # 1/5 image dimensions (and smaller...?) it is, however, recommended
+        # that macbeth charts take up as large as possible a proportion of the
+        # image.
+        if index >= 2 and (not small_chart or d_best <= index - 1):
+            break
+
+        w, h = list(img.shape[:2])
+        # Set dimensions of the subselection and the step along each axis
+        # between selections
+        w_sel = int(w * pair['sel'])
+        h_sel = int(h * pair['sel'])
+        w_inc = int(w * pair['inc'])
+        h_inc = int(h * pair['inc'])
+
+        loop = ((1 - pair['sel']) / pair['inc']) + 1
+        # For each subselection, look for a macbeth chart
+        for i in range(loop):
+            for j in range(loop):
+                w_s, h_s = i * w_inc, j * h_inc
+                img_sel = img[w_s:w_s + w_sel, h_s:h_s + h_sel]
+                cor_ij, mac_ij, coords_ij, ret_ij = get_macbeth_chart(img_sel, ref_data)
+
+                # If the correlation is better than the best then record the
+                # scale and current subselection at which macbeth chart was
+                # found. Also record the coordinates, macbeth chart and message.
+                if cor_ij > cor:
+                    cor = cor_ij
+                    mac, coords, ret = mac_ij, coords_ij, ret_ij
+                    ii, jj = i, j
+                    w_best, h_best = w_inc, h_inc
+                    d_best = index + 1
+
+    # Transform coordinates from subselection to original image
+    if ii != -1:
+        for a in range(len(coords)):
+            for b in range(len(coords[a][0])):
+                coords[a][0][b][1] += ii * w_best
+                coords[a][0][b][0] += jj * h_best
+
+    if not ret:
+        return None
+
+    coords_fit = coords
+    if cor < 0.75:
+        eprint(f'Warning: Low confidence {cor:.3f} for macbeth chart in {img.path.name}')
+
+    if show:
+        draw_macbeth_results(img, coords_fit)
+
+    return coords_fit
+
+
+def locate_macbeth(image: Image, config: dict):
+    # Find macbeth centres
+    av_chan = (np.mean(np.array(image.channels), axis=0) / (2**16))
+    av_val = np.mean(av_chan)
+    if av_val < image.blacklevel_16 / (2**16) + 1 / 64:
+        eprint(f'Image {image.path.name} too dark')
+        return None
+
+    macbeth = find_macbeth(av_chan, config['general']['macbeth'])
+
+    if macbeth is None:
+        eprint(f'No macbeth chart found in {image.path.name}')
+        return None
+
+    mac_cen_coords = macbeth[1]
+    if not image.get_patches(mac_cen_coords):
+        eprint(f'Macbeth patches have saturated in {image.path.name}')
+        return None
+
+    return macbeth
diff --git a/utils/tuning/libtuning/macbeth_ref.pgm b/utils/tuning/libtuning/macbeth_ref.pgm
new file mode 100644
index 00000000..37897140
--- /dev/null
+++ b/utils/tuning/libtuning/macbeth_ref.pgm
@@ -0,0 +1,6 @@
+# SPDX-License-Identifier: BSD-2-Clause
+P5
+# Reference macbeth chart
+120 80
+255
+      !#!" #!"&&$#$#'"%&#+2///..../.........-()))))))))))))))))))(((-,*)'(&)#($%(%"###""!%""&"&&!$" #!$ !"! $&**"  !#5.,%+,-5"0<HBAA54" %##((()*+,---.........+*)))))))))))))))-.,,--+))('((''('%'%##"!""!"!""""#!     !  %‚/vÀ¯z:òøßãLñ©û¶ÑÔcÒ,!#""%%''')**+)-../..../.-*)))))))))))))**,,)**'(''&'((&&%%##$! !!!! ! !     !   5*"-)&7(1.75Rnge`\`$ ""!"%%%'')())++--/---,-..,-.,++**))))())*)*)''%'%&%&'&%%"""""               !   !!$&$$&##(+*,,/10122126545./66402006486869650*.1.***)*+)()&((('('##)('&%%&%$$$#$%$%$ (((*))('((('('(&%V0;>>;@@>@AAAACBCB=&<­·³µ¶¾¿ÃÇÇÆÇËÒÐÇÄ<5x–•ŠŽŒŠ‰„„„„|64RYVTSRRRMMNLKJJLH+&0gijgdeffmmnpnkji`#3™ ª¦¨¨£Ÿ›››š–—™šbY! 3FHHIIIHIJIIJHIII@#?¾ÈÊÍÏÑÔÖØÚÚÚÛßáßÔ=7}—š˜———˜—˜˜——˜——‘:5Wcbcbdcb`^^`^^_^Y,'6‰ŽŒ‰ˆˆˆ‡†…„††„‚r'<½ÆÅÅÅÄÂÀ¿¾¾¼»¼¼µl%2FHHIIHJJJJJJIIJI?%;ÁÌÌÒÓÖØÙÛÛÜÜÞßâãÕ>7|•™™ž™—˜˜˜—™™™š˜–;8Xfeeegeccb`^aba]Z+)<Ž“’‘‹Š‰‰‰‰ˆ†r)>¿ÇÇÇÆÅÅÄÂÁÁÀ¾¾¼·q#3GHIIIIJIIJJIHIJI@&5ÁÎÑÔÕØÙÚÜÜÞßßßàâ×=8~”•˜™š›šš™›šœ››“;8Zgghggedbdcbda^\Z+(;““’‘‘Ž‹‹ŠŠ‰ˆy)9¿ÈÈÈÇÇÅÄÂÁÁÀ¿½½¹z"3GIIJJJJJKJJJJJJJ@'4ÂÑÔÔÙÚÛÜÞÝßßààààØ>9|”—–—™ššš™›œŸ¥ ž˜=8Zhighgeeeedeca__[/)B’–•••“‘ŽŒŒŒŒŠv&:ÁÊÊÊÊÆÆÆÂÁÂÂÁ¿¿º|#3GJJIIJKKKJJJKKJK@&6ÆÒ××ÙÛÛÞÞßààààààÖ>9~”———˜˜—™šžž    ˜<8Yghegggffihccab^\/*C“™˜—––””’‘‘Žz'9ÄÍËÈÈÇÇÆÆÄÂÂÀÀ¿»‚$  6IKJJMMMKMKKMKKMLC&2É××ÙÛÜßÞàááâââââÖ@9•——˜˜™˜˜š››žŸžž—<9Yghhhhijiegdcebc^0)G—›š™˜˜˜–•“’‘Ž(7ÃÍÌËÊÈÇÇÅÆÄÂÂÂÁº‰%   6JLMMNMMKMMNMMMMMD&2ÊÙÙÛÝßßßààáââáãâÖ@:~”—™™š™™››žžžžž—=9Xfghhjiigdgddedc`1)M—œ›š˜™—•”‘’‘Ž}(:ÄÐÍÌËÊÇÆÆÆÅÂÄÁ¾&  "8LNOONNOMONNMMNOND'3ÍÛÛÞßàààáââãâåãå×@;–˜˜™žŸŸ  ¡¡  —=:Ziiigheegegegggdc1,Q›ŸŸž›šš˜––““‘~)8ÂÍÎÌËÊÊÈÆÆÆÆÄÆÇÁ•%# "9NNNPPPQOOOOONNOOD'0ÎÜÜßßáàáââååäãåæ×?;–˜—™šœžŸ¡¡ ¡Ÿ  ™=;[iigeeegghgdedgea0-P› ¡ žš˜—–•”(8ÃÏÎÎÌÊÈÈÇÇÇÆÈÇÆÝ' "#$:NNOQPPRPQPOOPQPPD*1ÐßßàààâãããåææåææÛA;‚˜™™šœžžŸ  Ÿž Ÿ—;:Yfghgghgghghhdggc3.\¡£¡  Ÿœœš˜—•’‘~);ÅÎÎÑÐÌËÊÇÈÉÊÊÇŤ(&%%;OQQQRSSRPQQQQSQQF)3ÓßàááãâãåææææææçÜB<ƒ™šœœžžžžŸ žŸ Ÿž—=:Wfhghhhihggghfhee4/f ¥¤¢¡¡ŸŸš˜—””’‘‚*:ÇÏÍÍÎÎÍÌÉÈËÊÈÆÆä&%%%?RSSSSSTTTTSSSTTRE)5ÕàááãâäåæåæçççèèÛB=„šœœžŸ Ÿ ¡ žŸŸŸ˜@:Ygiihhiiiihihiiif72p £¤¤£ ŸŸœœ™—–•’‘}(9ÇÎÏÎÍÍÍÍÍËÌÊÈÈÇÆ©'#%&?TUTTTUUQSTTTTTVSF*3ÕàãâãäåæææçççèééßF>†žž  ¡¡£ £¡¡¡ Ÿ˜A;[ghjiihiiiihihije50r¢¦¥¥££ Ÿžœš™—–““‚)6ÈÏÏÎÌÎÎÌÏÏËÊÊÈÈÆ«& &#%?SVVVUUUUUTUUVVUUG*5ÖãããåæææçèèèèééëßF=…ŸŸ¢££££ ¡¡  £ ˜A;Yhijiiijjiiiiijje81t¦¦¦¥¥£¡ Ÿ›˜——•’~)5ÇÑÑÏÎËÍÍÑÑÌËÈÈÉÆ°' '$$=OQRRQQPRSRSSSSSSG+6ËÙÙÜÛÜÞÝßààààáããÙD@‚š›œŸœžœ›š”?;Wefgggggfffgeeefc41xŸžŸž››š˜•”’‘ŽŒ{*5¾ÈÈÇÅÃÃÄÄÃÂÂÂÀ¿¼«( &&&'++++,,*-,-00-0100*-SUX\]]`_ffgiooopo=;X\bedbadbca`]\]ZZ;;<::8:;9983433110/-,...1//12410/..--+)"",---,-./,,.-/-0-( &&%+/0103322011223233)(34534767::;;==:=B9;BFGEEGIKJKIJGIJCD=<:76566554111/0/1.*+00233300/00//..,+*#")(*)++,++))*++**'!!&$*w³½¾¿Â¼ÀÀ¼¼·¹¹¸´²Ž1-_addc`ceccdccedbb?A|ŒŒ‘‹ŒŒ‹ŠŠ‰‰ˆB>=>?@@?====;<:;:<:11r‹ŒŽ“–““•–˜™Ž+.’—”™ ¥¢¡¤žšŸŸœ( !'%*zÀÇÆÆÇÇÊÊÈÈÈÊËËËÉ 42gjmllklomooonpopmHG‘©¬«««¬©«««ª««ª©£D>AEDEFEECEECCCDDEC46µåçèçççæåäãáàÞÜÚ׿0:Î×Ö×××ÖÕÒÓÏÐÐÍÍѾ,!!&&,|ÂÇÇÇÇÇÇËËÇÈÊËËÍÊ¡61inknnoopoppoqqrqoEE”¬­­­®®®­®®¯­®®­¥FACGFFFFFFDFDDDDDDC57¹íñïîîíííëéçæãáßÝÄ09ÓÛÛÛÛÚÙØ×ÖÕÔÔÒÔÒÁ+!"%%-~ÀÆÈÊÇÇÈÉÌÌÊÊËÌÌÊ¡42inopppppoqqqrrsrnAB“«®®­®®®®®±­®¬°­¥C?DGGGGFFFFDFFDDEDC48ºíððïïîîíìëèçæãáßÅ1;ÔÞÞÝÜÚÚÙÙ×ÕÕÔÕÔÒÁ+!!"#*|¿ÄÉÊÈÈÈÈÉÍÉÈËÍÍÊ¡62imoppppqqqqrtrqtrGD•¬®®­°®°°°±±°®®­§H?CGGGGGGGGFFFFFFDB38»îðïïïïîíììëèçæâàÅ1<ÖààßÞÞÜÚÚÙÙÙ××ÔÔ½,  !)}¿ÃÈÈÊÇÈÈËÎËÊËÌÍË¢63mooppqqqqqqrrtvtoDH—­­®±®°±°­°®­±°°¦JACHHGGHGGFFFDDGGFD29ÀðóòðïïïîííìêéèæâÆ3>ÖááààßÞÜÛÙÙÙØ×Ø×½, $){¼ÂÅÆÉÇÈÆËËÌÊËÊÍË¢53jpppqprqrrrttuvuo>H˜®°®±²±±°°°±°±°°ªJAFHHHHHGGHGGFGGFFE28ÁðôòòððïïîíëìëéçãÇ3:×ãáááßÞÝÛÛÚÙÚÚÚÚ½- "*{¸ÁÁÅÆÇÆÆÊËÌÉÊËÎÌ£53loqpqsqrrrtrutsvrAH—«®®±±°°°®±±±®­°©HCGHIHHHHHHGFGHGGGD5;ÀðóóòñððïîííìëëèäÇ28ØäãááààßÞÜÛÛÛÚÚÚÀ, +}¹¾ÀÂÂÅÅÅÇÉÍËÊËÌÊ¡52mqoqpqrttttttuurpFI–®°±°±±²°±±°±±¯°§OCEHHIHHHHGHGGFFIGF8<ÃðòòóóòððïíîìììéæÍ48ÚçåããáààßÝÜÜÜÜÛÛ¿, (|º¼¾ÀÀÃÄÄÆÇÍËÊÊËÊ¢41krqpqqqrrtrtuvtuoEH—­°°²±±±±¯²²®²±®«PBHHIIIHIIHIHGHGHHE7<ÃðóóòñððððïíííìêçÑ58ÜèæåãââáßßÜÞÜÞÞÚÄ*  (zºº»¾ÀÂÂÂÄÄÇËÈÊËÊ¡63kpqprqqstttutrvvoFO˜¯°¯°±±°±±±±±°±²©LEHHIIHIHHHIGHGIHGF4=ÅñóóóððððïïîìíëéèÓ5<ÞêèçåââááßÞÞßßßÚÇ*  'zº½º»¾ÁÀÂÂÄÅÊÇÈÊÈ¡62lppqrqrrrtttuttvpAG›¯°±°±°°°°°±±°±±«MGHIIIIHIIIHHIIJHHG4<ÃñóóóðòððîîïííëéèÓ4<ÞëêççæãâáàßàÞÞÛØÇ+ !){º¼º»¾½ÀÁÁÂÄÉÇÇÉÈ 62jopqqqqqrtttutttrEH™¯±°°°¯°°±±²²°±±ªOHFIIIIIJIIIIHIHIHI7>ÅðôóòòòïðïîîíììëèÒ5;àíêèææãâáâßßÜÛÙÖÇ, !)z¼¾¼¹»»ÁÁ¿ÁÁÈÇÆÆÆŸ53lppqqrqrtttuuuutsFI™®±²±±±±²²²±°¯±²«RHGJIJHJKJJJIIIIIIH9>ÂñôôôòóððïîííìëééÓ5;àìééèææäááßÜÛØ×ÔÇ+  !({»¿¸º½½¿¾¿¾ÀÅÆÄÆÅœ41joppprqrrrutttvvrIH’­±°°°±±±²²°±²±±ªTHCJJJJJIJIJJIJJJIH7=ÂòôòóóñðïîîííììéèÒ5;ßìêêèæåäâàÞÛÙÖ×ÕÇ+  (u±±®¯±³µ²´´µº»¸»º‘65gjlmmmnoopnpprpqoIH¦©ª©«ªªª«¬«ªª¨ª¤OIBIJJJIJJJJIIIHHHG89ºåççæçåäããâáßàßÝÜÈ29ÔàßÝÛÛÙØÕÓÑÎÌÈÌʾ'  "&,-*)-01/,0/12102-+04448789<>>??AFAD at DBCIJNRWTSUXT[WUQUOKFEBBABA?>>=<<;;67942:<<<>9999864565363&(13335422./1/-+..+  !"&$$""$"&$%'()(''*+-0124688:<>>??A>?EBCHKOLJLNOSQOXQQVMLACGHGHIGFHGDCCBB@??7432233210111.,++,++%(++)*(''%%%$$#%&$#  ")0/001120024455520+-U]`addcdhefeekecYGFJRXYYVWWZWVXXVZTOBF}™œšœžœ›š™–™K7Ybccddfeg`^]^]\[Z[*)OTTPPQPOKOLLJJLIK   !1;:9:<<===;=???A at 9*/„Ž‘’”•”––—™™š››’FJmxyxwyzzzxyzzz{zxLOÉÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿú]=‹§©¨¦§¥¦¤¤¢¡¡¡ ›Ž.-‹’’Œ‰‡…‚€€€y# !!2><=;==>=<<>@@@@A9-0‡‘‘”—˜˜™—š›žŸ —IKnz||{|{||{}}~}}{zLOÌÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿý]>Ž¬­¬««¨ª¨§¦¥¥££¡¡–..Œ––”“Ž‹‹‰‡…………„~%  $2==;<>>?===>@A at AB;+1…Ž‘“•—™™˜˜™œžŸŸ—JJo{|y{||}{||}}}}}yMTÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿý_>Ž¬­¬«ª©©¦¦¦¤¤££¢ ”-.–”‘‘ŽŠŠ‰…„…„…„}#  %2<=;=<@?>==>?A at AA9+3…Ž‘“–——˜™šœšœœžž•FMlz{{y|}}}}||}|}}{MTÍÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýd>«¬«ªªª¨§¦¦¤¤¤¡  ”-,Œ“‘’Š‡†……„„„…# %1<<<;==<<=>?A?@AA:,3†Ž‘’•——˜˜šœšœœž–INo{{y{||||}|}}|~}{RTÍÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýd=Š©­¬«©©§¦¦¥¤¤£¡ Ÿ—/-‹’‘‹‹‰ˆ…………ƒƒ„}#!$0<<<=<<==>A@@>@AA:-2†‘“’–——™™šš™œ›œ—HInzz{{||{{}~~}}|}zMRÍÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýd=‰ª«ªªª§¥¥¥£¤¡¡  ”++ˆŽŽ‹ŠŠ‰………„„„ƒ„~# "$/;<==>;===@@@@>AA:+2†Ž’’“•—–™˜šœ™œ–KHn||y|||||{}~}|}|xMSÍÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýd=†©©ª©©§¦¦¥¤£¡Ÿ žœ’+,‡‹Š‰ˆ††…„„„„ƒ}# ! "/:<=>@<<>=@@@@@AA;-3„’’•–˜˜š™šššœ›˜MFs||{{{y}z}}|}|}}yMWÏÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýc>„©ª©§¦¦¥¤£¡£  ŸŸ›’,)…ŒŠ‹‰ˆ‡†…„„„ƒƒƒ|! !1;>?>><<>@>>=>ABB;,0ƒŽ‘’––™™™™ššœœ›˜LHr{|{|}|y|}}}}}zNXÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýc?„©«ª§§¦¥¥££   žžšŽ()„‹ŠŠ‰ˆ…†„„„„„‚ƒƒz#  $/;;<=;<>>=>>>@@BB:,1†‘“•–—˜™šœšœšž˜IInyz||||||{||}{~|{NVÏÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýc;§¨¨¦¦¦¤££¡¡ŸŸœš“('ƒŠŠˆ‰ˆ……ƒ„ƒƒƒƒ‚€}# $0:<==<;>@>>>>@ABB:,/„‘““–˜™™™šœšš—HLlx|}y{y{|y{|}}}}yMRÍÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýd>~¥§¦¦§¥¤££¢ ŸžššŽ*(ƒŠ‡‡ˆˆ„ƒ‚„ƒƒ‚‚‚y" !&3:;<<;==@@=>AABBA;-3†‘“‘”–—˜˜™šœœš›–KLqz{|||y{}|}{}|~{zRQÍÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüc9w¤§¦¥¦¤¢£  Ÿžžš™Ž)'ˆ†……„…„ƒƒƒ‚€€€€y" !%1<<;=>===<=@@ABBC<.5†’’•–—™˜™™œœž•IIlz{|}~~~|}{||~}}zMUÌÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüd;p¤¦¥¥¤¤£¤¢ Ÿž›š˜)$€ˆˆ…„„„…‚‚€€€x"  $2===<==@=<>=ABBBC?/0ˆ‘’•••˜—˜™™š™œž˜IGkz}}{||}{||y||}zyOVÊÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüc7o¢¥¥¤££¡¤¡žŸš™š˜‘'&~‡„„„„ƒ…„€~€z"#"#/;<:<<?>;===@?AAA>07‹‹Ž’’’”“•–—•‘GGgwxz{yyxyzzyz{yuuHO½ùûüüüüüüûûûúúúúò\8v›žœ›š™˜—•••”‘†'$w~~}|||{~|{zxxxxv!"""'*+(+)*))()+,,.../0398;=<=>DCCDDCBBDHBCJMMLMPNPOJPKPSJDICCNMPONMNNOKHIFDBHE3/46433323.....*+,)( !##!!!!!$#$$#$#&"!!"(+**,,*+.//1478:<:33ACDFGGIIHIJLPKNMQFIPTTRVXVUXUUTXUSTNEGGFDEFAA>==;94877520-,))*(((('&$#!!"  &%'FQPQR]dqŒ˜£«¹ÍàðÈ=FñûüÿÿÿÿÿÿÿÿÿÿÿÿÿúQN·èììêìæéììêéëëéêáLEœ˜…znki^[YTPUOS;.%-/12322221/10//,/%#0¯ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿß@QýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿQMÁðôõôóôóôõõôõôôóæKE„¨©¨§§¤¥¥¢¤£ žžž˜H01NNQOQQOOMNNLKLJGB'&/¸ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿâAWþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿOLÀñóôôôóóóõôôõóôòèKE„¦¨©©§ª©ª¦¨§¥¢¤¢œF-,PQQPQPPQPOONMNNKE''0·ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿáCZþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿRMÁñôóóòòôòôõóôôóòåJE‚¥©¬¬©ª©ª§¥¥¤¤¤¢™F,*NSQPPQOOOOMNNMKID('2·ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿáD[þÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿQKÀðòòòóóòóõóõóòòðæIF€§©ª©§©§©¥¤¤¤¤¡ ˜F,*NPPPPPPNOONMMMJIF!'(2¶ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿáF]þÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿRL¿íððòðòòóóòòñïòðäHD£¦©©§¨¦¦¦¤¤¤¤¢ ˜F+%MPPPPOOONONNMMKID)*4¸ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿáD^þÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿPL¿ìðïïòòððòòðïðòïäIC€¢¦¨¨¥¦¥§¥¤££¡ŸŸ—F+&NPOOOPPOONMMKMKHD**6ºÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿáD_þÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿQJ¾ëïïïòðððððïðïîïãFC~¢§¥¥¦¦¦¤££¤¡   ˜F,'MPOOOOONONNKKIIIG,+7»ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿáD^ýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿQI¾êîîîïðïðïððïïïîâEB|£¥¤££¤¤¤£¤¢Ÿ ŸŸ—E+&MONOOONNNNKMJKJHH,-8¹ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿàD]þÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿPI¼éíìîîîîñðòóóöù÷èHE¥¨§¥¥¤¤£¡£¡  žŸ—C,#LOOOONONNNKKKMKJF,*6»ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿáCaýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþMH»éììíîðððôóõöööõçIF‚©ª§¦¦¥££¢ Ÿžž Ÿ–D*%KONOMNMMKMKJJJIJE,,6»ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿâB^ýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþMG¹èììîðòóòóóóóòóôéHB}£©¦¦§¥¤¤¢ŸŸžžš”D+&LONOOONNMMMMKLKIA,,6ºÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿàA\ýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþMF¹éìííïòóôððôöõööêIE¦ª©¦§¨§§¡¡Ÿš™”E+&LNNMONNMMKKKKKIHF --6¹ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿßA[üÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþKF¶çìðïððïðóöõöõùúîJC©«­«¦§¦¥¤¡¤žžš—F*&LMONMNMNKKJMKJJIF **5»ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿß>WüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþKE¶èïíðîðóöõøòùóöôçF?}¨©²¯¬¬©¥¤¤£žœ˜˜‘C*%KONNNJKKKMKJKJKID,*4¶ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿØ<WöþÿÿÿÿÿÿÿÿÿÿÿÿÿÿøMA°áäååçêêïêëëåæéçÝGCxž¨¦ ©¥¤ šœ¡˜•’ŠB)%HKLKKJJJKIHIHHFGC!()*q ¡š›šš™““’‘‘’‹‹o39v|}wwwwwwrqtuspn=9^gadcfgce`dbUY[\^>;DIJDB?FEGE=7>8634.(&&(%&*&%%'+*)+*#%()''03364443233222243/-+133423333423766645789:><<<;<;<?=?;<<:78673/001113--.-+*)&&#"&$#%&""$!! ))+rbPpAD9-*******+*++)++--.//./.0/21453469:=;98<;<>=;><7766666741012.-13/-+-/(''&&&%%&$.%0()-%-#-#' #&(% )))hn›YQgÛ7(*))))*)**,--....../0/0001357666::;;>?>AA866666666656565300/20/.-*)(('((&&%)d=yoP¼<Ñ?ßFQFx;§2»1«0))*RQ.0*,,5*(*))))*,**,+/.../...02/22224456468;:>BB;>;:76666666666755303033/,.-*(())('&')#)"##(+$+*#)) & 
diff --git a/utils/tuning/libtuning/modules/__init__.py b/utils/tuning/libtuning/modules/__init__.py
new file mode 100644
index 00000000..e69de29b
diff --git a/utils/tuning/libtuning/modules/module.py b/utils/tuning/libtuning/modules/module.py
new file mode 100644
index 00000000..0fb5534c
--- /dev/null
+++ b/utils/tuning/libtuning/modules/module.py
@@ -0,0 +1,48 @@
+# SPDX-License-Identifier: GPL-2.0-or-later
+#
+# Copyright (C) 2022, Paul Elder <paul.elder at ideasonboard.com>
+
+
+# @var type Type of the module. Defined in the base module.
+# @var out_name The key that will be used for the algorithm in the algorithms
+#               dictionary in the tuning output file
+# @var hr_name Human-readable module name, mostly for debugging
+class Module(object):
+    type = 'base'
+    hr_name = 'Base Module'
+    out_name = 'GenericAlgorithm'
+
+    def __init__(self):
+        self.options = {}
+
+    # todo: I don't think we need these and the options member variable
+    def setValue(self, key, value):
+        self.options[key] = value
+
+    def appendValue(self, key, value):
+        if key not in self.options:
+            self.options[key] = []
+        if not isinstance(self.options[key], list):
+            raise TypeError(f'Options "{key}" in module "{self.name}" is not a list')
+        self.options[key].append(value)
+
+    def _validate_config(self, config: dict) -> bool:
+        raise NotImplementedError
+
+    def _process(self, args, config: dict, images: list, outputs: dict) -> dict:
+        raise NotImplementedError
+
+    def validateConfig(self, config: dict) -> bool:
+        return self._validate_config(config)
+
+    # @brief Do the module's processing
+    # @param args argparse arguments
+    # @param config Full configuration from the input configuration file
+    # @param images List of images to process
+    # @param outputs The outputs of all modules that were executed before this
+    #                module. Note that this is an input parameter, and the
+    #                output of this module should be returned directly
+    # @return Result of the module's processing. It may be empty. None
+    #         indicates failure and that the result should not be used.
+    def process(self, args, config: dict, images: list, outputs: dict) -> dict:
+        return self._process(args, config, images, outputs)
diff --git a/utils/tuning/libtuning/parsers/__init__.py b/utils/tuning/libtuning/parsers/__init__.py
new file mode 100644
index 00000000..e69de29b
diff --git a/utils/tuning/libtuning/parsers/parser.py b/utils/tuning/libtuning/parsers/parser.py
new file mode 100644
index 00000000..1be1fe2d
--- /dev/null
+++ b/utils/tuning/libtuning/parsers/parser.py
@@ -0,0 +1,22 @@
+# SPDX-License-Identifier: GPL-2.0-or-later
+#
+# Copyright (C) 2022, Paul Elder <paul.elder at ideasonboard.com>
+
+class Parser(object):
+    def __init__(self):
+        return
+
+    def _parse(self, config_file, modules):
+        raise NotImplementedError("_parse() must be implemented")
+
+    # @brief Parse a config file into a config dict
+    # @details The config dict shall have one key 'general' with a dict value
+    #          for general configuration options, and all other entries shall
+    #          have the module as the key with its configuration options (as a
+    #          dict) as the value. The config dict shall prune entries that are
+    #          for modules that are not in @a modules.
+    # @param config (str) Path to config file
+    # @param modules (list) List of modules
+    # @return (dict, list) Configuration and list of modules to disable
+    def parse(self, config_file: str, modules: list) -> (dict, list):
+        return self._parse(config_file, modules)
diff --git a/utils/tuning/libtuning/smoothing.py b/utils/tuning/libtuning/smoothing.py
new file mode 100644
index 00000000..a4796c61
--- /dev/null
+++ b/utils/tuning/libtuning/smoothing.py
@@ -0,0 +1,25 @@
+# SPDX-License-Identifier: GPL-2.0-or-later
+#
+# Copyright (C) 2022, Paul Elder <paul.elder at ideasonboard.com>
+
+import cv2
+
+
+# @brief Wrapper for cv2 smoothing functions so that they can be duck-typed
+class Smoothing(object):
+    def __init__(self):
+        return
+
+    def _smoothing(self, src):
+        raise NotImplementedError
+
+    def smoothing(self, src):
+        return self._smoothing(src)
+
+
+class MedianBlur(Smoothing):
+    def __init__(self, ksize):
+        self.ksize = ksize
+
+    def _smoothing(self, src):
+        return cv2.medianBlur(src.astype('float32'), self.ksize).astype('float64')
diff --git a/utils/tuning/libtuning/utils.py b/utils/tuning/libtuning/utils.py
new file mode 100644
index 00000000..bd38ac16
--- /dev/null
+++ b/utils/tuning/libtuning/utils.py
@@ -0,0 +1,151 @@
+# SPDX-License-Identifier: BSD-2-Clause
+#
+# Copyright (C) 2019, Raspberry Pi Ltd
+# Copyright (C) 2022, Paul Elder <paul.elder at ideasonboard.com>
+
+import decimal
+import math
+import numpy as np
+import os
+from pathlib import Path
+import re
+import sys
+
+import libtuning as lt
+from libtuning.image import Image
+from libtuning.macbeth import locate_macbeth
+
+# Utility functions
+
+
+def eprint(*args, **kwargs):
+    print(*args, file=sys.stderr, **kwargs)
+
+
+def get_module_by_typename(modules, name):
+    for module in modules:
+        if module.type == name:
+            return module
+    return None
+
+
+# @brief Round value while keeping the maximum number of decimal points
+# @param limits Tuple of [min, max] acceptable values
+# @description Prevents rounding such that significant figures are lost
+# todo Bikeshed this name
+def round_with_sigfigs(val, limits: tuple):
+    decimal_points = abs(decimal.Decimal(str(limits[-1])).as_tuple().exponent)
+    lshift = 10**(decimal_points - 1)
+    adjust = 10**(-decimal_points)
+
+    # We need the division to get rid of stray floating points
+    # todo Any better solution?
+    lower_bound = adjust * 10 * 5 * lshift / lshift
+    upper_bound = adjust * 10 * 95 * lshift / lshift
+
+    out = val
+    out = np.where((lshift * out) % 1 <= lower_bound, out + adjust, out)
+    out = np.where((lshift * out) % 1 >= upper_bound, out - adjust, out)
+    out = np.round(out, 3)
+
+    return out
+
+
+# Private utility functions
+
+
+def _list_image_files(directory):
+    d = Path(directory)
+    files = [d.joinpath(f) for f in os.listdir(d)
+             if re.search(r'\.(jp[e]g$)|(dng$)', f)]
+    files.sort()
+    return files
+
+
+def _parse_image_filename(fn: Path):
+    result = re.search(r'^(alsc_)?(\d+)[kK]_(\d+)?[lLuU]?.\w{3,4}$', fn.name)
+    if result is None:
+        eprint(f'The file name of {fn.name} is incorrectly formatted')
+        return None, None, None
+
+    color = int(result.group(2))
+    alsc_only = result.group(1) is not None
+    lux = None if alsc_only else int(result.group(3))
+
+    return color, lux, alsc_only
+
+
+def _load_dng_image(path: Path):
+    image = Image(path)
+
+    if not image.load_dng():
+        return None
+
+    return image
+
+
+# todo Implement this from check_imgs() in ctt.py
+def _validate_images(images):
+    return True
+
+
+# Public utility functions
+
+
+def load_images(input_dir: str, config: dict, modules: list) -> list:
+    files = _list_image_files(input_dir)
+    if len(files) == 0:
+        eprint(f'No images found in {input_dir}')
+        return None
+
+    # todo Should this match by name instead of type?
+    has_alsc = any(isinstance(m, lt.modules.alsc.ALSC) for m in modules)
+    # todo Is there any use case for multiple ALSC modules?
+    has_only_alsc = has_alsc and len(modules) == 1
+
+    # todo Should this be separated into two lists for alsc_only?
+    images = []
+    for f in files:
+        color, lux, alsc_only = _parse_image_filename(f)
+        if color is None:
+            continue
+
+        # Skip alsc image if we don't have an alsc module
+        if alsc_only and not has_alsc:
+            eprint(f'Skipping {fn.name} as this tuner has no ALSC module')
+            continue
+
+        # Skip non-alsc image if we have only an alsc module
+        if not alsc_only and has_only_alsc:
+            eprint(f'Skipping {fn.name} as this tuner only has an ALSC module')
+            continue
+
+        # Load image
+        image = _load_dng_image(f)
+        if image is None:
+            eprint(f'Failed to load image {f.name}')
+            continue
+
+        # Populate simple fields
+        image.alsc_only = alsc_only
+        image.color = color
+        image.lux = lux
+
+        if 'blacklevel' in config['general']:
+            image.blacklevel_16 = config['general']['blacklevel']
+
+        if alsc_only:
+            images.append(image)
+            continue
+
+        # Handle macbeth
+        macbeth = locate_macbeth(params)
+        if macbeth is None:
+            continue
+
+        images.append(image)
+
+    if not _validate_images(images):
+        return None
+
+    return images
-- 
2.30.2



More information about the libcamera-devel mailing list