[libcamera-devel] [PATCH v2 03/10] ipa: raspberrypi: Generalise the ALSC algorithm

Naushir Patuck naush at raspberrypi.com
Wed Mar 29 09:42:54 CEST 2023


Hi Kieran,

Thanks for the late night feedback! :-)

On Wed, 29 Mar 2023 at 00:21, Kieran Bingham
<kieran.bingham at ideasonboard.com> wrote:
>
> Quoting Naushir Patuck via libcamera-devel (2023-03-27 13:20:23)
> > Remove any hard-coded assumptions about the target hardware platform
> > from the ALSC algorithm. Instead, use the "target" string provided by
> > the camera tuning config and generalised statistics structures to
> > determing parameters such as grid and region sizes.
> >
> > The ALSC calculations use run-time allocated arrays/vectors on every
> > frame. Allocating these might add a non-trivial run-time penalty.
> > Replace these dynamic allocations with a set of reusable pre-allocated
> > vectors during the init phase.
> >
> > Signed-off-by: Naushir Patuck <naush at raspberrypi.com>
> > Signed-off-by: David Plowman <david.plowman at raspberrypi.com>
> > Reviewed-off-by: David Plowman <david.plowman at raspberrypi.com>
>
> Well this has taken me at least 2 or 3 reads to parse. And I haven't
> seen anything specific that worries me overall.
>
> The only thing to check below is
>  - Alsc::read using awbRegions

This is correct, ALSC works on AWB region stats.  Hence the usage here.

Regards,
Naush


>
> And I almost tripped up on the IIR filter - but I think it's fine, it
> was just me mis-reading it.
>
> If the awb region is fine:
>
> Reviewed-by: Kieran Bingham <kieran.bingham at ideasonboard.com>
>
> > ---
> >  src/ipa/raspberrypi/controller/alsc_status.h |  13 +-
> >  src/ipa/raspberrypi/controller/rpi/alsc.cpp  | 341 +++++++++++--------
> >  src/ipa/raspberrypi/controller/rpi/alsc.h    |  29 +-
> >  src/ipa/raspberrypi/raspberrypi.cpp          |   9 +-
> >  4 files changed, 224 insertions(+), 168 deletions(-)
> >
> > diff --git a/src/ipa/raspberrypi/controller/alsc_status.h b/src/ipa/raspberrypi/controller/alsc_status.h
> > index e5aa7e37c330..49a9f4a0cb5a 100644
> > --- a/src/ipa/raspberrypi/controller/alsc_status.h
> > +++ b/src/ipa/raspberrypi/controller/alsc_status.h
> > @@ -6,16 +6,17 @@
> >   */
> >  #pragma once
> >
> > +#include <vector>
> > +
> >  /*
> >   * The ALSC algorithm should post the following structure into the image's
> >   * "alsc.status" metadata.
> >   */
> >
> > -constexpr unsigned int AlscCellsX = 16;
> > -constexpr unsigned int AlscCellsY = 12;
> > -
> >  struct AlscStatus {
> > -       double r[AlscCellsY][AlscCellsX];
> > -       double g[AlscCellsY][AlscCellsX];
> > -       double b[AlscCellsY][AlscCellsX];
> > +       std::vector<double> r;
> > +       std::vector<double> g;
> > +       std::vector<double> b;
> > +       unsigned int rows;
> > +       unsigned int cols;
> >  };
> > diff --git a/src/ipa/raspberrypi/controller/rpi/alsc.cpp b/src/ipa/raspberrypi/controller/rpi/alsc.cpp
> > index eb4e2f9496e1..51fe5d73f52d 100644
> > --- a/src/ipa/raspberrypi/controller/rpi/alsc.cpp
> > +++ b/src/ipa/raspberrypi/controller/rpi/alsc.cpp
> > @@ -5,6 +5,7 @@
> >   * alsc.cpp - ALSC (auto lens shading correction) control algorithm
> >   */
> >
> > +#include <algorithm>
> >  #include <functional>
> >  #include <math.h>
> >  #include <numeric>
> > @@ -24,9 +25,6 @@ LOG_DEFINE_CATEGORY(RPiAlsc)
> >
> >  #define NAME "rpi.alsc"
> >
> > -static const int X = AlscCellsX;
> > -static const int Y = AlscCellsY;
> > -static const int XY = X * Y;
> >  static const double InsufficientData = -1.0;
> >
> >  Alsc::Alsc(Controller *controller)
> > @@ -51,8 +49,11 @@ char const *Alsc::name() const
> >         return NAME;
> >  }
> >
> > -static int generateLut(double *lut, const libcamera::YamlObject &params)
> > +static int generateLut(std::vector<double> &lut, const libcamera::YamlObject &params,
> > +                      const Size &size)
> >  {
> > +       /* These must be signed ints for the co-ordinate calculations below. */
> > +       int X = size.width, Y = size.height;
> >         double cstrength = params["corner_strength"].get<double>(2.0);
> >         if (cstrength <= 1.0) {
> >                 LOG(RPiAlsc, Error) << "corner_strength must be > 1.0";
> > @@ -81,9 +82,9 @@ static int generateLut(double *lut, const libcamera::YamlObject &params)
> >         return 0;
> >  }
> >
> > -static int readLut(double *lut, const libcamera::YamlObject &params)
> > +static int readLut(std::vector<double> &lut, const libcamera::YamlObject &params, const Size &size)
> >  {
> > -       if (params.size() != XY) {
> > +       if (params.size() != size.width * size.height) {
> >                 LOG(RPiAlsc, Error) << "Invalid number of entries in LSC table";
> >                 return -EINVAL;
> >         }
> > @@ -101,7 +102,7 @@ static int readLut(double *lut, const libcamera::YamlObject &params)
> >
> >  static int readCalibrations(std::vector<AlscCalibration> &calibrations,
> >                             const libcamera::YamlObject &params,
> > -                           std::string const &name)
> > +                           std::string const &name, const Size &size)
> >  {
> >         if (params.contains(name)) {
> >                 double lastCt = 0;
> > @@ -119,7 +120,7 @@ static int readCalibrations(std::vector<AlscCalibration> &calibrations,
> >                         calibration.ct = lastCt = ct;
> >
> >                         const libcamera::YamlObject &table = p["table"];
> > -                       if (table.size() != XY) {
> > +                       if (table.size() != size.width * size.height) {
> >                                 LOG(RPiAlsc, Error)
> >                                         << "Incorrect number of values for ct "
> >                                         << ct << " in " << name;
> > @@ -127,6 +128,7 @@ static int readCalibrations(std::vector<AlscCalibration> &calibrations,
> >                         }
> >
> >                         int num = 0;
> > +                       calibration.table.resize(size.width * size.height);
> >                         for (const auto &elem : table.asList()) {
> >                                 value = elem.get<double>();
> >                                 if (!value)
> > @@ -134,7 +136,7 @@ static int readCalibrations(std::vector<AlscCalibration> &calibrations,
> >                                 calibration.table[num++] = *value;
> >                         }
> >
> > -                       calibrations.push_back(calibration);
> > +                       calibrations.push_back(std::move(calibration));
> >                         LOG(RPiAlsc, Debug)
> >                                 << "Read " << name << " calibration for ct " << ct;
> >                 }
> > @@ -144,6 +146,7 @@ static int readCalibrations(std::vector<AlscCalibration> &calibrations,
> >
> >  int Alsc::read(const libcamera::YamlObject &params)
> >  {
> > +       config_.tableSize = getHardwareConfig().awbRegions;
>
> I suspect this is fine, but is the ALSC always based on the same
> regions as the AWB ?
>
>
> >         config_.framePeriod = params["frame_period"].get<uint16_t>(12);
> >         config_.startupFrames = params["startup_frames"].get<uint16_t>(10);
> >         config_.speed = params["speed"].get<double>(0.05);
> > @@ -153,28 +156,29 @@ int Alsc::read(const libcamera::YamlObject &params)
> >         config_.minCount = params["min_count"].get<double>(10.0);
> >         config_.minG = params["min_G"].get<uint16_t>(50);
> >         config_.omega = params["omega"].get<double>(1.3);
> > -       config_.nIter = params["n_iter"].get<uint32_t>(X + Y);
> > +       config_.nIter = params["n_iter"].get<uint32_t>(config_.tableSize.width + config_.tableSize.height);
> >         config_.luminanceStrength =
> >                 params["luminance_strength"].get<double>(1.0);
> > -       for (int i = 0; i < XY; i++)
> > -               config_.luminanceLut[i] = 1.0;
> >
> > +       config_.luminanceLut.resize(config_.tableSize.width * config_.tableSize.height, 1.0);
> >         int ret = 0;
> >
> >         if (params.contains("corner_strength"))
> > -               ret = generateLut(config_.luminanceLut, params);
> > +               ret = generateLut(config_.luminanceLut, params, config_.tableSize);
> >         else if (params.contains("luminance_lut"))
> > -               ret = readLut(config_.luminanceLut, params["luminance_lut"]);
> > +               ret = readLut(config_.luminanceLut, params["luminance_lut"], config_.tableSize);
> >         else
> >                 LOG(RPiAlsc, Warning)
> >                         << "no luminance table - assume unity everywhere";
> >         if (ret)
> >                 return ret;
> >
> > -       ret = readCalibrations(config_.calibrationsCr, params, "calibrations_Cr");
> > +       ret = readCalibrations(config_.calibrationsCr, params, "calibrations_Cr",
> > +                              config_.tableSize);
> >         if (ret)
> >                 return ret;
> > -       ret = readCalibrations(config_.calibrationsCb, params, "calibrations_Cb");
> > +       ret = readCalibrations(config_.calibrationsCb, params, "calibrations_Cb",
> > +                              config_.tableSize);
> >         if (ret)
> >                 return ret;
> >
> > @@ -187,13 +191,16 @@ int Alsc::read(const libcamera::YamlObject &params)
> >
> >  static double getCt(Metadata *metadata, double defaultCt);
> >  static void getCalTable(double ct, std::vector<AlscCalibration> const &calibrations,
> > -                       double calTable[XY]);
> > -static void resampleCalTable(double const calTableIn[XY], CameraMode const &cameraMode,
> > -                            double calTableOut[XY]);
> > -static void compensateLambdasForCal(double const calTable[XY], double const oldLambdas[XY],
> > -                                   double newLambdas[XY]);
> > -static void addLuminanceToTables(double results[3][Y][X], double const lambdaR[XY], double lambdaG,
> > -                                double const lambdaB[XY], double const luminanceLut[XY],
> > +                       std::vector<double> &calTable);
> > +static void resampleCalTable(const std::vector<double> &calTableIn, CameraMode const &cameraMode,
> > +                            const Size &size, std::vector<double> &calTableOut);
> > +static void compensateLambdasForCal(const std::vector<double> &calTable,
> > +                                   const std::vector<double> &oldLambdas,
> > +                                   std::vector<double> &newLambdas);
> > +static void addLuminanceToTables(std::array<std::vector<double>, 3> &results,
> > +                                const std::vector<double> &lambdaR, double lambdaG,
> > +                                const std::vector<double> &lambdaB,
> > +                                const std::vector<double> &luminanceLut,
> >                                  double luminanceStrength);
> >
> >  void Alsc::initialise()
> > @@ -201,7 +208,28 @@ void Alsc::initialise()
> >         frameCount2_ = frameCount_ = framePhase_ = 0;
> >         firstTime_ = true;
> >         ct_ = config_.defaultCt;
> > +
> > +       const size_t XY = config_.tableSize.width * config_.tableSize.height;
> > +
> > +       for (auto &r : syncResults_)
> > +               r.resize(XY);
> > +       for (auto &r : prevSyncResults_)
> > +               r.resize(XY);
> > +       for (auto &r : asyncResults_)
> > +               r.resize(XY);
> > +
> > +       luminanceTable_.resize(XY);
> > +       asyncLambdaR_.resize(XY);
> > +       asyncLambdaB_.resize(XY);
> >         /* The lambdas are initialised in the SwitchMode. */
> > +       lambdaR_.resize(XY);
> > +       lambdaB_.resize(XY);
> > +
> > +       /* Temporaries for the computations, but sensible to allocate this up-front! */
> > +       for (auto &c : tmpC_)
> > +               c.resize(XY);
> > +       for (auto &m : tmpM_)
> > +               m.resize(XY);
> >  }
> >
> >  void Alsc::waitForAysncThread()
> > @@ -262,7 +290,7 @@ void Alsc::switchMode(CameraMode const &cameraMode,
> >          * We must resample the luminance table like we do the others, but it's
> >          * fixed so we can simply do it up front here.
> >          */
> > -       resampleCalTable(config_.luminanceLut, cameraMode_, luminanceTable_);
> > +       resampleCalTable(config_.luminanceLut, cameraMode_, config_.tableSize, luminanceTable_);
> >
> >         if (resetTables) {
> >                 /*
> > @@ -272,18 +300,18 @@ void Alsc::switchMode(CameraMode const &cameraMode,
> >                  * the lambdas, but the rest of this code then echoes the code in
> >                  * doAlsc, without the adaptive algorithm.
> >                  */
> > -               for (int i = 0; i < XY; i++)
> > -                       lambdaR_[i] = lambdaB_[i] = 1.0;
> > -               double calTableR[XY], calTableB[XY], calTableTmp[XY];
> > +               std::fill(lambdaR_.begin(), lambdaR_.end(), 1.0);
> > +               std::fill(lambdaB_.begin(), lambdaB_.end(), 1.0);
> > +               std::vector<double> &calTableR = tmpC_[0], &calTableB = tmpC_[1], &calTableTmp = tmpC_[2];
> >                 getCalTable(ct_, config_.calibrationsCr, calTableTmp);
> > -               resampleCalTable(calTableTmp, cameraMode_, calTableR);
> > +               resampleCalTable(calTableTmp, cameraMode_, config_.tableSize, calTableR);
> >                 getCalTable(ct_, config_.calibrationsCb, calTableTmp);
> > -               resampleCalTable(calTableTmp, cameraMode_, calTableB);
> > +               resampleCalTable(calTableTmp, cameraMode_, config_.tableSize, calTableB);
> >                 compensateLambdasForCal(calTableR, lambdaR_, asyncLambdaR_);
> >                 compensateLambdasForCal(calTableB, lambdaB_, asyncLambdaB_);
> >                 addLuminanceToTables(syncResults_, asyncLambdaR_, 1.0, asyncLambdaB_,
> >                                      luminanceTable_, config_.luminanceStrength);
> > -               memcpy(prevSyncResults_, syncResults_, sizeof(prevSyncResults_));
> > +               prevSyncResults_ = syncResults_;
> >                 framePhase_ = config_.framePeriod; /* run the algo again asap */
> >                 firstTime_ = false;
> >         }
> > @@ -294,7 +322,7 @@ void Alsc::fetchAsyncResults()
> >         LOG(RPiAlsc, Debug) << "Fetch ALSC results";
> >         asyncFinished_ = false;
> >         asyncStarted_ = false;
> > -       memcpy(syncResults_, asyncResults_, sizeof(syncResults_));
> > +       syncResults_ = asyncResults_;
> >  }
> >
> >  double getCt(Metadata *metadata, double defaultCt)
> > @@ -316,9 +344,9 @@ static void copyStats(RgbyRegions &regions, StatisticsPtr &stats,
> >         if (!regions.numRegions())
> >                 regions.init(stats->awbRegions.size());
> >
> > -       double *rTable = (double *)status.r;
> > -       double *gTable = (double *)status.g;
> > -       double *bTable = (double *)status.b;
> > +       const std::vector<double> &rTable = status.r;
> > +       const std::vector<double> &gTable = status.g;
> > +       const std::vector<double> &bTable = status.b;
> >         for (unsigned int i = 0; i < stats->awbRegions.numRegions(); i++) {
> >                 auto r = stats->awbRegions.get(i);
> >                 r.val.rSum = static_cast<uint64_t>(r.val.rSum / rTable[i]);
> > @@ -344,12 +372,9 @@ void Alsc::restartAsync(StatisticsPtr &stats, Metadata *imageMetadata)
> >         if (imageMetadata->get("alsc.status", alscStatus) != 0) {
> >                 LOG(RPiAlsc, Warning)
> >                         << "No ALSC status found for applied gains!";
> > -               for (int y = 0; y < Y; y++)
> > -                       for (int x = 0; x < X; x++) {
> > -                               alscStatus.r[y][x] = 1.0;
> > -                               alscStatus.g[y][x] = 1.0;
> > -                               alscStatus.b[y][x] = 1.0;
> > -                       }
> > +               alscStatus.r.resize(config_.tableSize.width * config_.tableSize.height, 1.0);
> > +               alscStatus.g.resize(config_.tableSize.width * config_.tableSize.height, 1.0);
> > +               alscStatus.b.resize(config_.tableSize.width * config_.tableSize.height, 1.0);
> >         }
> >         copyStats(statistics_, stats, alscStatus);
> >         framePhase_ = 0;
> > @@ -380,15 +405,15 @@ void Alsc::prepare(Metadata *imageMetadata)
> >                         fetchAsyncResults();
> >         }
> >         /* Apply IIR filter to results and program into the pipeline. */
> > -       double *ptr = (double *)syncResults_,
> > -              *pptr = (double *)prevSyncResults_;
> > -       for (unsigned int i = 0; i < sizeof(syncResults_) / sizeof(double); i++)
> > -               pptr[i] = speed * ptr[i] + (1.0 - speed) * pptr[i];
> > +       for (unsigned int j = 0; j < syncResults_.size(); j++) {
> > +               for (unsigned int i = 0; i < syncResults_[j].size(); i++)
> > +                       prevSyncResults_[j][i] = speed * syncResults_[j][i] + (1.0 - speed) * prevSyncResults_[j][i];
>
> I almost slipped up here thinking this read as "X = Y" ... but I
> misread. Definitely using both 'syncResults_' 'prevSyncResults_' so I
> think this is fine.
>
>
> > +       }
> >         /* Put output values into status metadata. */
> >         AlscStatus status;
> > -       memcpy(status.r, prevSyncResults_[0], sizeof(status.r));
> > -       memcpy(status.g, prevSyncResults_[1], sizeof(status.g));
> > -       memcpy(status.b, prevSyncResults_[2], sizeof(status.b));
> > +       status.r = prevSyncResults_[0];
> > +       status.g = prevSyncResults_[1];
> > +       status.b = prevSyncResults_[2];
> >         imageMetadata->set("alsc.status", status);
> >  }
> >
> > @@ -432,18 +457,17 @@ void Alsc::asyncFunc()
> >  }
> >
> >  void getCalTable(double ct, std::vector<AlscCalibration> const &calibrations,
> > -                double calTable[XY])
> > +                std::vector<double> &calTable)
> >  {
> >         if (calibrations.empty()) {
> > -               for (int i = 0; i < XY; i++)
> > -                       calTable[i] = 1.0;
> > +               std::fill(calTable.begin(), calTable.end(), 1.0);
> >                 LOG(RPiAlsc, Debug) << "no calibrations found";
> >         } else if (ct <= calibrations.front().ct) {
> > -               memcpy(calTable, calibrations.front().table, XY * sizeof(double));
> > +               calTable = calibrations.front().table;
> >                 LOG(RPiAlsc, Debug) << "using calibration for "
> >                                     << calibrations.front().ct;
> >         } else if (ct >= calibrations.back().ct) {
> > -               memcpy(calTable, calibrations.back().table, XY * sizeof(double));
> > +               calTable = calibrations.back().table;
> >                 LOG(RPiAlsc, Debug) << "using calibration for "
> >                                     << calibrations.back().ct;
> >         } else {
> > @@ -454,7 +478,7 @@ void getCalTable(double ct, std::vector<AlscCalibration> const &calibrations,
> >                 LOG(RPiAlsc, Debug)
> >                         << "ct is " << ct << ", interpolating between "
> >                         << ct0 << " and " << ct1;
> > -               for (int i = 0; i < XY; i++)
> > +               for (unsigned int i = 0; i < calTable.size(); i++)
> >                         calTable[i] =
> >                                 (calibrations[idx].table[i] * (ct1 - ct) +
> >                                  calibrations[idx + 1].table[i] * (ct - ct0)) /
> > @@ -462,9 +486,13 @@ void getCalTable(double ct, std::vector<AlscCalibration> const &calibrations,
> >         }
> >  }
> >
> > -void resampleCalTable(double const calTableIn[XY],
> > -                     CameraMode const &cameraMode, double calTableOut[XY])
> > +void resampleCalTable(const std::vector<double> &calTableIn,
> > +                     CameraMode const &cameraMode, const Size &size,
> > +                     std::vector<double> &calTableOut)
> >  {
> > +       int X = size.width;
> > +       int Y = size.height;
> > +
> >         /*
> >          * Precalculate and cache the x sampling locations and phases to save
> >          * recomputing them on every row.
> > @@ -501,23 +529,24 @@ void resampleCalTable(double const calTableIn[XY],
> >                         yLo = Y - 1 - yLo;
> >                         yHi = Y - 1 - yHi;
> >                 }
> > -               double const *rowAbove = calTableIn + X * yLo;
> > -               double const *rowBelow = calTableIn + X * yHi;
> > +               double const *rowAbove = calTableIn.data() + X * yLo;
> > +               double const *rowBelow = calTableIn.data() + X * yHi;
> > +               double *out = calTableOut.data() + X * j;
> >                 for (int i = 0; i < X; i++) {
> >                         double above = rowAbove[xLo[i]] * (1 - xf[i]) +
> >                                        rowAbove[xHi[i]] * xf[i];
> >                         double below = rowBelow[xLo[i]] * (1 - xf[i]) +
> >                                        rowBelow[xHi[i]] * xf[i];
> > -                       *(calTableOut++) = above * (1 - yf) + below * yf;
> > +                       *(out++) = above * (1 - yf) + below * yf;
> >                 }
> >         }
> >  }
> >
> >  /* Calculate chrominance statistics (R/G and B/G) for each region. */
> > -static void calculateCrCb(const RgbyRegions &awbRegion, double cr[XY],
> > -                         double cb[XY], uint32_t minCount, uint16_t minG)
> > +static void calculateCrCb(const RgbyRegions &awbRegion, std::vector<double> &cr,
> > +                         std::vector<double> &cb, uint32_t minCount, uint16_t minG)
> >  {
> > -       for (int i = 0; i < XY; i++) {
> > +       for (unsigned int i = 0; i < cr.size(); i++) {
> >                 auto s = awbRegion.get(i);
> >
> >                 if (s.counted <= minCount || s.val.gSum / s.counted <= minG) {
> > @@ -530,33 +559,34 @@ static void calculateCrCb(const RgbyRegions &awbRegion, double cr[XY],
> >         }
> >  }
> >
> > -static void applyCalTable(double const calTable[XY], double C[XY])
> > +static void applyCalTable(const std::vector<double> &calTable, std::vector<double> &C)
> >  {
> > -       for (int i = 0; i < XY; i++)
> > +       for (unsigned int i = 0; i < C.size(); i++)
> >                 if (C[i] != InsufficientData)
> >                         C[i] *= calTable[i];
> >  }
> >
> > -void compensateLambdasForCal(double const calTable[XY],
> > -                            double const oldLambdas[XY],
> > -                            double newLambdas[XY])
> > +void compensateLambdasForCal(const std::vector<double> &calTable,
> > +                            const std::vector<double> &oldLambdas,
> > +                            std::vector<double> &newLambdas)
> >  {
> >         double minNewLambda = std::numeric_limits<double>::max();
> > -       for (int i = 0; i < XY; i++) {
> > +       for (unsigned int i = 0; i < newLambdas.size(); i++) {
> >                 newLambdas[i] = oldLambdas[i] * calTable[i];
> >                 minNewLambda = std::min(minNewLambda, newLambdas[i]);
> >         }
> > -       for (int i = 0; i < XY; i++)
> > +       for (unsigned int i = 0; i < newLambdas.size(); i++)
> >                 newLambdas[i] /= minNewLambda;
> >  }
> >
> > -[[maybe_unused]] static void printCalTable(double const C[XY])
> > +[[maybe_unused]] static void printCalTable(const std::vector<double> &C,
> > +                                          const Size &size)
> >  {
> >         printf("table: [\n");
> > -       for (int j = 0; j < Y; j++) {
> > -               for (int i = 0; i < X; i++) {
> > -                       printf("%5.3f", 1.0 / C[j * X + i]);
> > -                       if (i != X - 1 || j != Y - 1)
> > +       for (unsigned int j = 0; j < size.height; j++) {
> > +               for (unsigned int i = 0; i < size.width; i++) {
> > +                       printf("%5.3f", 1.0 / C[j * size.width + i]);
> > +                       if (i != size.width - 1 || j != size.height - 1)
> >                                 printf(",");
> >                 }
> >                 printf("\n");
> > @@ -577,9 +607,13 @@ static double computeWeight(double Ci, double Cj, double sigma)
> >  }
> >
> >  /* Compute all weights. */
> > -static void computeW(double const C[XY], double sigma, double W[XY][4])
> > +static void computeW(const std::vector<double> &C, double sigma,
> > +                    std::vector<std::array<double, 4>> &W, const Size &size)
> >  {
> > -       for (int i = 0; i < XY; i++) {
> > +       size_t XY = size.width * size.height;
> > +       size_t X = size.width;
> > +
> > +       for (unsigned int i = 0; i < XY; i++) {
> >                 /* Start with neighbour above and go clockwise. */
> >                 W[i][0] = i >= X ? computeWeight(C[i], C[i - X], sigma) : 0;
> >                 W[i][1] = i % X < X - 1 ? computeWeight(C[i], C[i + 1], sigma) : 0;
> > @@ -589,11 +623,16 @@ static void computeW(double const C[XY], double sigma, double W[XY][4])
> >  }
> >
> >  /* Compute M, the large but sparse matrix such that M * lambdas = 0. */
> > -static void constructM(double const C[XY], double const W[XY][4],
> > -                      double M[XY][4])
> > +static void constructM(const std::vector<double> &C,
> > +                      const std::vector<std::array<double, 4>> &W,
> > +                      std::vector<std::array<double, 4>> &M,
> > +                      const Size &size)
> >  {
> > +       size_t XY = size.width * size.height;
> > +       size_t X = size.width;
> > +
> >         double epsilon = 0.001;
> > -       for (int i = 0; i < XY; i++) {
> > +       for (unsigned int i = 0; i < XY; i++) {
> >                 /*
> >                  * Note how, if C[i] == INSUFFICIENT_DATA, the weights will all
> >                  * be zero so the equation is still set up correctly.
> > @@ -614,79 +653,80 @@ static void constructM(double const C[XY], double const W[XY][4],
> >   * left/right neighbours are zero down the left/right edges, so we don't need
> >   * need to test the i value to exclude them.
> >   */
> > -static double computeLambdaBottom(int i, double const M[XY][4],
> > -                                 double lambda[XY])
> > +static double computeLambdaBottom(int i, const std::vector<std::array<double, 4>> &M,
> > +                                 std::vector<double> &lambda, const Size &size)
> >  {
> > -       return M[i][1] * lambda[i + 1] + M[i][2] * lambda[i + X] +
> > +       return M[i][1] * lambda[i + 1] + M[i][2] * lambda[i + size.width] +
> >                M[i][3] * lambda[i - 1];
> >  }
> > -static double computeLambdaBottomStart(int i, double const M[XY][4],
> > -                                      double lambda[XY])
> > +static double computeLambdaBottomStart(int i, const std::vector<std::array<double, 4>> &M,
> > +                                      std::vector<double> &lambda, const Size &size)
> >  {
> > -       return M[i][1] * lambda[i + 1] + M[i][2] * lambda[i + X];
> > +       return M[i][1] * lambda[i + 1] + M[i][2] * lambda[i + size.width];
> >  }
> > -static double computeLambdaInterior(int i, double const M[XY][4],
> > -                                   double lambda[XY])
> > +static double computeLambdaInterior(int i, const std::vector<std::array<double, 4>> &M,
> > +                                   std::vector<double> &lambda, const Size &size)
> >  {
> > -       return M[i][0] * lambda[i - X] + M[i][1] * lambda[i + 1] +
> > -              M[i][2] * lambda[i + X] + M[i][3] * lambda[i - 1];
> > +       return M[i][0] * lambda[i - size.width] + M[i][1] * lambda[i + 1] +
> > +              M[i][2] * lambda[i + size.width] + M[i][3] * lambda[i - 1];
> >  }
> > -static double computeLambdaTop(int i, double const M[XY][4],
> > -                              double lambda[XY])
> > +static double computeLambdaTop(int i, const std::vector<std::array<double, 4>> &M,
> > +                              std::vector<double> &lambda, const Size &size)
> >  {
> > -       return M[i][0] * lambda[i - X] + M[i][1] * lambda[i + 1] +
> > +       return M[i][0] * lambda[i - size.width] + M[i][1] * lambda[i + 1] +
> >                M[i][3] * lambda[i - 1];
> >  }
> > -static double computeLambdaTopEnd(int i, double const M[XY][4],
> > -                                 double lambda[XY])
> > +static double computeLambdaTopEnd(int i, const std::vector<std::array<double, 4>> &M,
> > +                                 std::vector<double> &lambda, const Size &size)
> >  {
> > -       return M[i][0] * lambda[i - X] + M[i][3] * lambda[i - 1];
> > +       return M[i][0] * lambda[i - size.width] + M[i][3] * lambda[i - 1];
> >  }
> >
> >  /* Gauss-Seidel iteration with over-relaxation. */
> > -static double gaussSeidel2Sor(double const M[XY][4], double omega,
> > -                             double lambda[XY], double lambdaBound)
> > +static double gaussSeidel2Sor(const std::vector<std::array<double, 4>> &M, double omega,
> > +                             std::vector<double> &lambda, double lambdaBound,
> > +                             const Size &size)
> >  {
> > +       int XY = size.width * size.height;
> > +       int X = size.width;
> >         const double min = 1 - lambdaBound, max = 1 + lambdaBound;
> > -       double oldLambda[XY];
> > +       std::vector<double> oldLambda = lambda;
> >         int i;
> > -       for (i = 0; i < XY; i++)
> > -               oldLambda[i] = lambda[i];
> > -       lambda[0] = computeLambdaBottomStart(0, M, lambda);
> > +       lambda[0] = computeLambdaBottomStart(0, M, lambda, size);
> >         lambda[0] = std::clamp(lambda[0], min, max);
> >         for (i = 1; i < X; i++) {
> > -               lambda[i] = computeLambdaBottom(i, M, lambda);
> > +               lambda[i] = computeLambdaBottom(i, M, lambda, size);
> >                 lambda[i] = std::clamp(lambda[i], min, max);
> >         }
> >         for (; i < XY - X; i++) {
> > -               lambda[i] = computeLambdaInterior(i, M, lambda);
> > +               lambda[i] = computeLambdaInterior(i, M, lambda, size);
> >                 lambda[i] = std::clamp(lambda[i], min, max);
> >         }
> >         for (; i < XY - 1; i++) {
> > -               lambda[i] = computeLambdaTop(i, M, lambda);
> > +               lambda[i] = computeLambdaTop(i, M, lambda, size);
> >                 lambda[i] = std::clamp(lambda[i], min, max);
> >         }
> > -       lambda[i] = computeLambdaTopEnd(i, M, lambda);
> > +       lambda[i] = computeLambdaTopEnd(i, M, lambda, size);
> >         lambda[i] = std::clamp(lambda[i], min, max);
> >         /*
> >          * Also solve the system from bottom to top, to help spread the updates
> >          * better.
> >          */
> > -       lambda[i] = computeLambdaTopEnd(i, M, lambda);
> > +       lambda[i] = computeLambdaTopEnd(i, M, lambda, size);
> >         lambda[i] = std::clamp(lambda[i], min, max);
> >         for (i = XY - 2; i >= XY - X; i--) {
> > -               lambda[i] = computeLambdaTop(i, M, lambda);
> > +               lambda[i] = computeLambdaTop(i, M, lambda, size);
> >                 lambda[i] = std::clamp(lambda[i], min, max);
> >         }
> >         for (; i >= X; i--) {
> > -               lambda[i] = computeLambdaInterior(i, M, lambda);
> > +               lambda[i] = computeLambdaInterior(i, M, lambda, size);
> >                 lambda[i] = std::clamp(lambda[i], min, max);
> >         }
> >         for (; i >= 1; i--) {
> > -               lambda[i] = computeLambdaBottom(i, M, lambda);
> > +               lambda[i] = computeLambdaBottom(i, M, lambda, size);
> >                 lambda[i] = std::clamp(lambda[i], min, max);
> >         }
> > -       lambda[0] = computeLambdaBottomStart(0, M, lambda);
> > +       lambda[0] = computeLambdaBottomStart(0, M, lambda, size);
> >         lambda[0] = std::clamp(lambda[0], min, max);
> >         double maxDiff = 0;
> >         for (i = 0; i < XY; i++) {
> > @@ -698,33 +738,33 @@ static double gaussSeidel2Sor(double const M[XY][4], double omega,
> >  }
> >
> >  /* Normalise the values so that the smallest value is 1. */
> > -static void normalise(double *ptr, size_t n)
> > +static void normalise(std::vector<double> &results)
> >  {
> > -       double minval = ptr[0];
> > -       for (size_t i = 1; i < n; i++)
> > -               minval = std::min(minval, ptr[i]);
> > -       for (size_t i = 0; i < n; i++)
> > -               ptr[i] /= minval;
> > +       double minval = *std::min_element(results.begin(), results.end());
> > +       std::for_each(results.begin(), results.end(),
> > +                     [minval](double val) { return val / minval; });
> >  }
> >
> >  /* Rescale the values so that the average value is 1. */
> > -static void reaverage(Span<double> data)
> > +static void reaverage(std::vector<double> &data)
> >  {
> >         double sum = std::accumulate(data.begin(), data.end(), 0.0);
> >         double ratio = 1 / (sum / data.size());
> > -       for (double &d : data)
> > -               d *= ratio;
> > +       std::for_each(data.begin(), data.end(),
> > +                     [ratio](double val) { return val * ratio; });
> >  }
> >
> > -static void runMatrixIterations(double const C[XY], double lambda[XY],
> > -                               double const W[XY][4], double omega,
> > -                               int nIter, double threshold, double lambdaBound)
> > +static void runMatrixIterations(const std::vector<double> &C,
> > +                               std::vector<double> &lambda,
> > +                               const std::vector<std::array<double, 4>> &W,
> > +                               std::vector<std::array<double, 4>> &M, double omega,
> > +                               unsigned int nIter, double threshold, double lambdaBound,
> > +                               const Size &size)
> >  {
> > -       double M[XY][4];
> > -       constructM(C, W, M);
> > +       constructM(C, W, M, size);
> >         double lastMaxDiff = std::numeric_limits<double>::max();
> > -       for (int i = 0; i < nIter; i++) {
> > -               double maxDiff = fabs(gaussSeidel2Sor(M, omega, lambda, lambdaBound));
> > +       for (unsigned int i = 0; i < nIter; i++) {
> > +               double maxDiff = fabs(gaussSeidel2Sor(M, omega, lambda, lambdaBound, size));
> >                 if (maxDiff < threshold) {
> >                         LOG(RPiAlsc, Debug)
> >                                 << "Stop after " << i + 1 << " iterations";
> > @@ -741,39 +781,44 @@ static void runMatrixIterations(double const C[XY], double lambda[XY],
> >                 lastMaxDiff = maxDiff;
> >         }
> >         /* We're going to normalise the lambdas so the total average is 1. */
> > -       reaverage({ lambda, XY });
> > +       reaverage(lambda);
>
> Somehow I thought lambda was a reserved keyword, but it doesn't seem to
> be.
>
>
> >  }
> >
> > -static void addLuminanceRb(double result[XY], double const lambda[XY],
> > -                          double const luminanceLut[XY],
> > +static void addLuminanceRb(std::vector<double> &result, const std::vector<double> &lambda,
> > +                          const std::vector<double> &luminanceLut,
> >                            double luminanceStrength)
> >  {
> > -       for (int i = 0; i < XY; i++)
> > +       for (unsigned int i = 0; i < result.size(); i++)
> >                 result[i] = lambda[i] * ((luminanceLut[i] - 1) * luminanceStrength + 1);
> >  }
> >
> > -static void addLuminanceG(double result[XY], double lambda,
> > -                         double const luminanceLut[XY],
> > +static void addLuminanceG(std::vector<double> &result, double lambda,
> > +                         const std::vector<double> &luminanceLut,
> >                           double luminanceStrength)
> >  {
> > -       for (int i = 0; i < XY; i++)
> > +       for (unsigned int i = 0; i < result.size(); i++)
> >                 result[i] = lambda * ((luminanceLut[i] - 1) * luminanceStrength + 1);
> >  }
> >
> > -void addLuminanceToTables(double results[3][Y][X], double const lambdaR[XY],
> > -                         double lambdaG, double const lambdaB[XY],
> > -                         double const luminanceLut[XY],
> > +void addLuminanceToTables(std::array<std::vector<double>, 3> &results,
> > +                         const std::vector<double> &lambdaR,
> > +                         double lambdaG, const std::vector<double> &lambdaB,
> > +                         const std::vector<double> &luminanceLut,
> >                           double luminanceStrength)
> >  {
> > -       addLuminanceRb((double *)results[0], lambdaR, luminanceLut, luminanceStrength);
> > -       addLuminanceG((double *)results[1], lambdaG, luminanceLut, luminanceStrength);
> > -       addLuminanceRb((double *)results[2], lambdaB, luminanceLut, luminanceStrength);
> > -       normalise((double *)results, 3 * XY);
> > +       addLuminanceRb(results[0], lambdaR, luminanceLut, luminanceStrength);
> > +       addLuminanceG(results[1], lambdaG, luminanceLut, luminanceStrength);
> > +       addLuminanceRb(results[2], lambdaB, luminanceLut, luminanceStrength);
> > +       for (auto &r : results)
> > +               normalise(r);
> >  }
> >
> >  void Alsc::doAlsc()
> >  {
> > -       double cr[XY], cb[XY], wr[XY][4], wb[XY][4], calTableR[XY], calTableB[XY], calTableTmp[XY];
> > +       std::vector<double> &cr = tmpC_[0], &cb = tmpC_[1], &calTableR = tmpC_[2],
> > +                           &calTableB = tmpC_[3], &calTableTmp = tmpC_[4];
> > +       std::vector<std::array<double, 4>> &wr = tmpM_[0], &wb = tmpM_[1], &M = tmpM_[2];
> > +
> >         /*
> >          * Calculate our R/B ("Cr"/"Cb") colour statistics, and assess which are
> >          * usable.
> > @@ -784,9 +829,9 @@ void Alsc::doAlsc()
> >          * case the camera mode is not full-frame.
> >          */
> >         getCalTable(ct_, config_.calibrationsCr, calTableTmp);
> > -       resampleCalTable(calTableTmp, cameraMode_, calTableR);
> > +       resampleCalTable(calTableTmp, cameraMode_, config_.tableSize, calTableR);
> >         getCalTable(ct_, config_.calibrationsCb, calTableTmp);
> > -       resampleCalTable(calTableTmp, cameraMode_, calTableB);
> > +       resampleCalTable(calTableTmp, cameraMode_, config_.tableSize, calTableB);
> >         /*
> >          * You could print out the cal tables for this image here, if you're
> >          * tuning the algorithm...
> > @@ -796,13 +841,13 @@ void Alsc::doAlsc()
> >         applyCalTable(calTableR, cr);
> >         applyCalTable(calTableB, cb);
> >         /* Compute weights between zones. */
> > -       computeW(cr, config_.sigmaCr, wr);
> > -       computeW(cb, config_.sigmaCb, wb);
> > +       computeW(cr, config_.sigmaCr, wr, config_.tableSize);
> > +       computeW(cb, config_.sigmaCb, wb, config_.tableSize);
> >         /* Run Gauss-Seidel iterations over the resulting matrix, for R and B. */
> > -       runMatrixIterations(cr, lambdaR_, wr, config_.omega, config_.nIter,
> > -                           config_.threshold, config_.lambdaBound);
> > -       runMatrixIterations(cb, lambdaB_, wb, config_.omega, config_.nIter,
> > -                           config_.threshold, config_.lambdaBound);
> > +       runMatrixIterations(cr, lambdaR_, wr, M, config_.omega, config_.nIter,
> > +                           config_.threshold, config_.lambdaBound, config_.tableSize);
> > +       runMatrixIterations(cb, lambdaB_, wb, M, config_.omega, config_.nIter,
> > +                           config_.threshold, config_.lambdaBound, config_.tableSize);
> >         /*
> >          * Fold the calibrated gains into our final lambda values. (Note that on
> >          * the next run, we re-start with the lambda values that don't have the
> > diff --git a/src/ipa/raspberrypi/controller/rpi/alsc.h b/src/ipa/raspberrypi/controller/rpi/alsc.h
> > index 9167c9ffa2e3..85e998db40e9 100644
> > --- a/src/ipa/raspberrypi/controller/rpi/alsc.h
> > +++ b/src/ipa/raspberrypi/controller/rpi/alsc.h
> > @@ -6,9 +6,13 @@
> >   */
> >  #pragma once
> >
> > +#include <array>
> >  #include <mutex>
> >  #include <condition_variable>
> >  #include <thread>
> > +#include <vector>
> > +
> > +#include <libcamera/geometry.h>
> >
> >  #include "../algorithm.h"
> >  #include "../alsc_status.h"
> > @@ -20,7 +24,7 @@ namespace RPiController {
> >
> >  struct AlscCalibration {
> >         double ct;
> > -       double table[AlscCellsX * AlscCellsY];
> > +       std::vector<double> table;
> >  };
> >
> >  struct AlscConfig {
> > @@ -36,13 +40,14 @@ struct AlscConfig {
> >         uint16_t minG;
> >         double omega;
> >         uint32_t nIter;
> > -       double luminanceLut[AlscCellsX * AlscCellsY];
> > +       std::vector<double> luminanceLut;
> >         double luminanceStrength;
> >         std::vector<AlscCalibration> calibrationsCr;
> >         std::vector<AlscCalibration> calibrationsCb;
> >         double defaultCt; /* colour temperature if no metadata found */
> >         double threshold; /* iteration termination threshold */
> >         double lambdaBound; /* upper/lower bound for lambda from a value of 1 */
> > +       libcamera::Size tableSize;
> >  };
> >
> >  class Alsc : public Algorithm
> > @@ -62,7 +67,7 @@ private:
> >         AlscConfig config_;
> >         bool firstTime_;
> >         CameraMode cameraMode_;
> > -       double luminanceTable_[AlscCellsX * AlscCellsY];
> > +       std::vector<double> luminanceTable_;
> >         std::thread asyncThread_;
> >         void asyncFunc(); /* asynchronous thread function */
> >         std::mutex mutex_;
> > @@ -88,8 +93,8 @@ private:
> >         int frameCount_;
> >         /* counts up to startupFrames for Process function */
> >         int frameCount2_;
> > -       double syncResults_[3][AlscCellsY][AlscCellsX];
> > -       double prevSyncResults_[3][AlscCellsY][AlscCellsX];
> > +       std::array<std::vector<double>, 3> syncResults_;
> > +       std::array<std::vector<double>, 3> prevSyncResults_;
> >         void waitForAysncThread();
> >         /*
> >          * The following are for the asynchronous thread to use, though the main
> > @@ -100,12 +105,16 @@ private:
> >         void fetchAsyncResults();
> >         double ct_;
> >         RgbyRegions statistics_;
> > -       double asyncResults_[3][AlscCellsY][AlscCellsX];
> > -       double asyncLambdaR_[AlscCellsX * AlscCellsY];
> > -       double asyncLambdaB_[AlscCellsX * AlscCellsY];
> > +       std::array<std::vector<double>, 3> asyncResults_;
> > +       std::vector<double> asyncLambdaR_;
> > +       std::vector<double> asyncLambdaB_;
> >         void doAlsc();
> > -       double lambdaR_[AlscCellsX * AlscCellsY];
> > -       double lambdaB_[AlscCellsX * AlscCellsY];
> > +       std::vector<double> lambdaR_;
> > +       std::vector<double> lambdaB_;
> > +
> > +       /* Temporaries for the computations */
> > +       std::array<std::vector<double>, 5> tmpC_;
> > +       std::array<std::vector<std::array<double, 4>>, 3> tmpM_;
> >  };
> >
> >  } /* namespace RPiController */
> > diff --git a/src/ipa/raspberrypi/raspberrypi.cpp b/src/ipa/raspberrypi/raspberrypi.cpp
> > index b64cb96e2dde..257d862e07b6 100644
> > --- a/src/ipa/raspberrypi/raspberrypi.cpp
> > +++ b/src/ipa/raspberrypi/raspberrypi.cpp
> > @@ -14,6 +14,7 @@
> >  #include <stdint.h>
> >  #include <string.h>
> >  #include <sys/mman.h>
> > +#include <vector>
> >
> >  #include <linux/bcm2835-isp.h>
> >
> > @@ -174,7 +175,7 @@ private:
> >         void applyDPC(const struct DpcStatus *dpcStatus, ControlList &ctrls);
> >         void applyLS(const struct AlscStatus *lsStatus, ControlList &ctrls);
> >         void applyAF(const struct AfStatus *afStatus, ControlList &lensCtrls);
> > -       void resampleTable(uint16_t dest[], double const src[12][16], int destW, int destH);
> > +       void resampleTable(uint16_t dest[], const std::vector<double> &src, int destW, int destH);
> >
> >         std::map<unsigned int, MappedFrameBuffer> buffers_;
> >
> > @@ -1768,7 +1769,7 @@ void IPARPi::applyAF(const struct AfStatus *afStatus, ControlList &lensCtrls)
> >   * Resamples a 16x12 table with central sampling to destW x destH with corner
> >   * sampling.
> >   */
> > -void IPARPi::resampleTable(uint16_t dest[], double const src[12][16],
> > +void IPARPi::resampleTable(uint16_t dest[], const std::vector<double> &src,
> >                            int destW, int destH)
> >  {
> >         /*
> > @@ -1793,8 +1794,8 @@ void IPARPi::resampleTable(uint16_t dest[], double const src[12][16],
> >                 double yf = y - yLo;
> >                 int yHi = yLo < 11 ? yLo + 1 : 11;
> >                 yLo = yLo > 0 ? yLo : 0;
> > -               double const *rowAbove = src[yLo];
> > -               double const *rowBelow = src[yHi];
> > +               double const *rowAbove = src.data() + yLo * 16;
> > +               double const *rowBelow = src.data() + yHi * 16;
>
> Is this 'stride' always going to be 16?
>
> >                 for (int i = 0; i < destW; i++) {
> >                         double above = rowAbove[xLo[i]] * (1 - xf[i]) + rowAbove[xHi[i]] * xf[i];
> >                         double below = rowBelow[xLo[i]] * (1 - xf[i]) + rowBelow[xHi[i]] * xf[i];
> > --
> > 2.34.1
> >


More information about the libcamera-devel mailing list