[PATCH 3/4] ipa: libipa: pwl: Clean up Pwl class to match libcamera

Naushir Patuck naush at raspberrypi.com
Fri Apr 5 17:09:06 CEST 2024


Hi Paul,

On Fri, 5 Apr 2024 at 15:37, Paul Elder <paul.elder at ideasonboard.com> wrote:
>
> Hi Naush,
>
> On Fri, Apr 05, 2024 at 10:56:58AM +0100, Naushir Patuck wrote:
> > Hi Paul,
> >
> > On Fri, 5 Apr 2024 at 09:03, Paul Elder <paul.elder at ideasonboard.com> wrote:
> > >
> > > Clean up the Pwl class copied from the Raspberry Pi IPA to align it more
> > > with the libcamera style.
> > >
> > > Signed-off-by: Paul Elder <paul.elder at ideasonboard.com>
> > > ---
> > >  src/ipa/libipa/pwl.cpp | 135 +++++++++++++++++++++++++++++++++--------
> > >  src/ipa/libipa/pwl.h   | 113 ++++++++++++++--------------------
> > >  2 files changed, 154 insertions(+), 94 deletions(-)
> > >
> > > diff --git a/src/ipa/libipa/pwl.cpp b/src/ipa/libipa/pwl.cpp
> > > index 09f5d65c..58925d83 100644
> > > --- a/src/ipa/libipa/pwl.cpp
> > > +++ b/src/ipa/libipa/pwl.cpp
> > > @@ -5,13 +5,40 @@
> > >   * pwl.cpp - piecewise linear functions
> > >   */
> > >
> > > +#include "pwl.h"
> > > +
> > >  #include <cassert>
> > >  #include <cmath>
> > > +#include <sstream>
> > >  #include <stdexcept>
> > >
> > > -#include "pwl.h"
> > > +#include <libcamera/geometry.h>
> > > +
> > > +namespace libcamera {
> > > +
> > > +namespace ipa {
> > >
> > > -int Pwl::read(const libcamera::YamlObject &params)
> > > +/*
> > > + * \enum Pwl::PerpType
> > > + * \brief Type of perpendicular found when inverting a piecewise linear function
> > > + *
> > > + * \var None
> > > + * \brief no perpendicular found
> > > + *
> > > + * \var Start
> > > + * \brief start of Pwl is closest point
> > > + *
> > > + * \var End
> > > + * \brief end of Pwl is closest point
> > > + *
> > > + * \var Vertex
> > > + * \brief vertex of Pwl is closest point
> > > + *
> > > + * \var Perpendicular
> > > + * \brief true perpendicular found
> > > + */
> > > +
> > > +int Pwl::readYaml(const libcamera::YamlObject &params)
> > >  {
> > >         if (!params.size() || params.size() % 2)
> > >                 return -EINVAL;
> > > @@ -29,7 +56,7 @@ int Pwl::read(const libcamera::YamlObject &params)
> > >                 if (!y)
> > >                         return -EINVAL;
> > >
> > > -               points_.push_back(Point(*x, *y));
> > > +               points_.push_back(FPoint(*x, *y));
> > >         }
> > >
> > >         return 0;
> > > @@ -38,13 +65,13 @@ int Pwl::read(const libcamera::YamlObject &params)
> > >  void Pwl::append(double x, double y, const double eps)
> > >  {
> > >         if (points_.empty() || points_.back().x + eps < x)
> > > -               points_.push_back(Point(x, y));
> > > +               points_.push_back(FPoint(x, y));
> > >  }
> > >
> > >  void Pwl::prepend(double x, double y, const double eps)
> > >  {
> > >         if (points_.empty() || points_.front().x - eps > x)
> > > -               points_.insert(points_.begin(), Point(x, y));
> > > +               points_.insert(points_.begin(), FPoint(x, y));
> > >  }
> > >
> > >  Pwl::Interval Pwl::domain() const
> > > @@ -65,6 +92,19 @@ bool Pwl::empty() const
> > >         return points_.empty();
> > >  }
> > >
> > > +/*
> > > + * \brief Evaluate the piecewise linear function
> > > + * \param[in] x The x value to input into the function
> > > + * \param[inout] spanPtr Initial guess for span
> > > + * \param[in] updateSpan Set to true to update spanPtr
> > > + *
> > > + * Evaluate Pwl, optionally supplying an initial guess for the
> > > + * "span". The "span" may be optionally be updated.  If you want to know
> > > + * the "span" value but don't have an initial guess you can set it to
> > > + * -1.
> > > + *
> > > + *  \return The result of evaluating the piecewise linear function with input \a x
> > > + */
> > >  double Pwl::eval(double x, int *spanPtr, bool updateSpan) const
> > >  {
> > >         int span = findSpan(x, spanPtr && *spanPtr != -1 ? *spanPtr : points_.size() / 2 - 1);
> > > @@ -94,16 +134,22 @@ int Pwl::findSpan(double x, int span) const
> > >         return span;
> > >  }
> > >
> > > -Pwl::PerpType Pwl::invert(Point const &xy, Point &perp, int &span,
> > > +/*
> > > + * Find perpendicular closest to xy, starting from span+1 so you can
> > > + * call it repeatedly to check for multiple closest points (set span to
> > > + * -1 on the first call). Also returns "pseudo" perpendiculars; see
> > > + * PerpType enum.
> > > + */
> > > +Pwl::PerpType Pwl::invert(FPoint const &xy, FPoint &perp, int &span,
> > >                           const double eps) const
> > >  {
> > >         assert(span >= -1);
> > >         bool prevOffEnd = false;
> > >         for (span = span + 1; span < (int)points_.size() - 1; span++) {
> > > -               Point spanVec = points_[span + 1] - points_[span];
> > > +               FPoint spanVec = points_[span + 1] - points_[span];
> > >                 double t = ((xy - points_[span]) % spanVec) / spanVec.len2();
> > > -               if (t < -eps) /* off the start of this span */
> > > -               {
> > > +               if (t < -eps) {
> > > +                       /* off the start of this span */
> > >                         if (span == 0) {
> > >                                 perp = points_[span];
> > >                                 return PerpType::Start;
> > > @@ -111,15 +157,15 @@ Pwl::PerpType Pwl::invert(Point const &xy, Point &perp, int &span,
> > >                                 perp = points_[span];
> > >                                 return PerpType::Vertex;
> > >                         }
> > > -               } else if (t > 1 + eps) /* off the end of this span */
> > > -               {
> > > +               } else if (t > 1 + eps) {
> > > +                       /* off the end of this span */
> > >                         if (span == (int)points_.size() - 2) {
> > >                                 perp = points_[span + 1];
> > >                                 return PerpType::End;
> > >                         }
> > >                         prevOffEnd = true;
> > > -               } else /* a true perpendicular */
> > > -               {
> > > +               } else {
> > > +                       /* a true perpendicular */
> > >                         perp = points_[span] + spanVec * t;
> > >                         return PerpType::Perpendicular;
> > >                 }
> > > @@ -127,25 +173,34 @@ Pwl::PerpType Pwl::invert(Point const &xy, Point &perp, int &span,
> > >         return PerpType::None;
> > >  }
> > >
> > > +/*
> > > + * \brief Compute the inverse function
> > > + * \param[out] trueInverse True of the resulting inverse is a proper/true inverse
> > > + * \param[in] eps Epsilon (optional)
> > > + * Indicate if it is a proper (true) inverse, or only a best effort (e.g.
> > > + * input was non-monotonic).
> > > + * \return The inverse piecewise linear function
> > > + */
> > >  Pwl Pwl::inverse(bool *trueInverse, const double eps) const
> > >  {
> > >         bool appended = false, prepended = false, neither = false;
> > >         Pwl inverse;
> > >
> > > -       for (Point const &p : points_) {
> > > -               if (inverse.empty())
> > > +       for (FPoint const &p : points_) {
> > > +               if (inverse.empty()) {
> > >                         inverse.append(p.y, p.x, eps);
> > > -               else if (std::abs(inverse.points_.back().x - p.y) <= eps ||
> > > -                        std::abs(inverse.points_.front().x - p.y) <= eps)
> > > +               } else if (std::abs(inverse.points_.back().x - p.y) <= eps ||
> > > +                          std::abs(inverse.points_.front().x - p.y) <= eps) {
> > >                         /* do nothing */;
> > > -               else if (p.y > inverse.points_.back().x) {
> > > +               } else if (p.y > inverse.points_.back().x) {
> > >                         inverse.append(p.y, p.x, eps);
> > >                         appended = true;
> > >                 } else if (p.y < inverse.points_.front().x) {
> > >                         inverse.prepend(p.y, p.x, eps);
> > >                         prepended = true;
> > > -               } else
> > > +               } else {
> > >                         neither = true;
> > > +               }
> > >         }
> > >
> > >         /*
> > > @@ -159,18 +214,25 @@ Pwl Pwl::inverse(bool *trueInverse, const double eps) const
> > >         return inverse;
> > >  }
> > >
> > > +/*
> > > + * \brief Compose two piecewise linear functions together
> > > + * \param[in] other The "other" piecewise linear function
> > > + * \param[in] eps Epsilon (optiona)
> > > + * The "this" function is done first, and "other" after.
> > > + * \return The composed piecewise linear function
> > > + */
> > >  Pwl Pwl::compose(Pwl const &other, const double eps) const
> > >  {
> > >         double thisX = points_[0].x, thisY = points_[0].y;
> > >         int thisSpan = 0, otherSpan = other.findSpan(thisY, 0);
> > >         Pwl result({ { thisX, other.eval(thisY, &otherSpan, false) } });
> > > +
> > >         while (thisSpan != (int)points_.size() - 1) {
> > >                 double dx = points_[thisSpan + 1].x - points_[thisSpan].x,
> > >                        dy = points_[thisSpan + 1].y - points_[thisSpan].y;
> > >                 if (std::abs(dy) > eps &&
> > >                     otherSpan + 1 < (int)other.points_.size() &&
> > > -                   points_[thisSpan + 1].y >=
> > > -                           other.points_[otherSpan + 1].x + eps) {
> > > +                   points_[thisSpan + 1].y >= other.points_[otherSpan + 1].x + eps) {
> > >                         /*
> > >                          * next control point in result will be where this
> > >                          * function's y reaches the next span in other
> > > @@ -204,18 +266,24 @@ Pwl Pwl::compose(Pwl const &other, const double eps) const
> > >         return result;
> > >  }
> > >
> > > +/* \brief Apply function to (x,y) values at every control point. */
> > >  void Pwl::map(std::function<void(double x, double y)> f) const
> > >  {
> > >         for (auto &pt : points_)
> > >                 f(pt.x, pt.y);
> > >  }
> > >
> > > +/*
> > > + * \brief Apply function to (x, y0, y1) values wherever either Pwl has a
> > > + * control point.
> > > + */
> > >  void Pwl::map2(Pwl const &pwl0, Pwl const &pwl1,
> > >                std::function<void(double x, double y0, double y1)> f)
> > >  {
> > >         int span0 = 0, span1 = 0;
> > >         double x = std::min(pwl0.points_[0].x, pwl1.points_[0].x);
> > >         f(x, pwl0.eval(x, &span0, false), pwl1.eval(x, &span1, false));
> > > +
> > >         while (span0 < (int)pwl0.points_.size() - 1 ||
> > >                span1 < (int)pwl1.points_.size() - 1) {
> > >                 if (span0 == (int)pwl0.points_.size() - 1)
> > > @@ -230,6 +298,12 @@ void Pwl::map2(Pwl const &pwl0, Pwl const &pwl1,
> > >         }
> > >  }
> > >
> > > +/*
> > > + * \brief Combine two Pwls
> > > + *
> > > + * Create a new Pwl where the y values are given by running f wherever either
> > > + * has a knot.
> > > + */
> > >  Pwl Pwl::combine(Pwl const &pwl0, Pwl const &pwl1,
> > >                  std::function<double(double x, double y0, double y1)> f,
> > >                  const double eps)
> > > @@ -241,6 +315,11 @@ Pwl Pwl::combine(Pwl const &pwl0, Pwl const &pwl1,
> > >         return result;
> > >  }
> > >
> > > +/*
> > > + * \brief Make "this" match (at least) the given domain.
> > > + *
> > > + * Any extension my be clipped or linear.
> > > + */
> > >  void Pwl::matchDomain(Interval const &domain, bool clip, const double eps)
> > >  {
> > >         int span = 0;
> > > @@ -258,10 +337,16 @@ Pwl &Pwl::operator*=(double d)
> > >         return *this;
> > >  }
> > >
> > > -void Pwl::debug(FILE *fp) const
> > > +std::string Pwl::toString() const
> > >  {
> > > -       fprintf(fp, "Pwl {\n");
> > > +       std::stringstream ss;
> > > +       ss << "Pwl { ";
> > >         for (auto &p : points_)
> > > -               fprintf(fp, "\t(%g, %g)\n", p.x, p.y);
> > > -       fprintf(fp, "}\n");
> > > +               ss << "(" << p.x << ", " << p.y << ") ";
> > > +       ss << "}";
> > > +       return ss.str();
> > >  }
> > > +
> > > +} /* namespace ipa */
> > > +
> > > +} /* namespace libcamera */
> > > diff --git a/src/ipa/libipa/pwl.h b/src/ipa/libipa/pwl.h
> > > index 7a6a6452..ef49e302 100644
> > > --- a/src/ipa/libipa/pwl.h
> > > +++ b/src/ipa/libipa/pwl.h
> > > @@ -8,116 +8,91 @@
> > >
> > >  #include <functional>
> > >  #include <math.h>
> > > +#include <string>
> > >  #include <vector>
> > >
> > > +#include <libcamera/geometry.h>
> > > +
> > >  #include "libcamera/internal/yaml_parser.h"
> > >
> > > +namespace libcamera {
> > > +
> > > +namespace ipa {
> > > +
> > >  class Pwl
> > >  {
> > >  public:
> > > +       enum class PerpType {
> > > +               None,
> > > +               Start,
> > > +               End,
> > > +               Vertex,
> > > +               Perpendicular,
> > > +       };
> > > +
> > >         struct Interval {
> > >                 Interval(double _start, double _end)
> > > -                       : start(_start), end(_end)
> > > -               {
> > > -               }
> > > -               double start, end;
> > > +                       : start(_start), end(_end) {}
> > > +
> > >                 bool contains(double value)
> > >                 {
> > >                         return value >= start && value <= end;
> > >                 }
> > > -               double clip(double value)
> > > +
> > > +               double clamp(double value)
> >
> > Typically clamp implies a min/max range value.  Since we are only
> > using a singular value here, IMO this should still be called clip.
>
> I was under the impression that the interval itself made up the min and max
> range values, which is why I changed it to clamp. I started seeing clip
> used elsewhere too though and I suppose it's not that big of a deal so
> I'll change it back to clip (except I have patches coming in a few
> minutes that depend on this so they'll still have clamp).

You are right, this is a clamp operation, I just didn't read the code
right.  I'd be happy to change the clip to clamp like you've already
done.

Regards,
Naush

>
>
> Thanks,
>
> Paul
>
> >
> >
> > >                 {
> > >                         return value < start ? start
> > >                                              : (value > end ? end : value);
> > >                 }
> > > +
> > >                 double len() const { return end - start; }
> > > +
> > > +               double start, end;
> > >         };
> > > -       struct Point {
> > > -               Point() : x(0), y(0) {}
> > > -               Point(double _x, double _y)
> > > -                       : x(_x), y(_y) {}
> > > -               double x, y;
> > > -               Point operator-(Point const &p) const
> > > -               {
> > > -                       return Point(x - p.x, y - p.y);
> > > -               }
> > > -               Point operator+(Point const &p) const
> > > -               {
> > > -                       return Point(x + p.x, y + p.y);
> > > -               }
> > > -               double operator%(Point const &p) const
> > > -               {
> > > -                       return x * p.x + y * p.y;
> > > -               }
> > > -               Point operator*(double f) const { return Point(x * f, y * f); }
> > > -               Point operator/(double f) const { return Point(x / f, y / f); }
> > > -               double len2() const { return x * x + y * y; }
> > > -               double len() const { return sqrt(len2()); }
> > > -       };
> > > +
> > >         Pwl() {}
> > > -       Pwl(std::vector<Point> const &points) : points_(points) {}
> > > -       int read(const libcamera::YamlObject &params);
> > > +       Pwl(std::vector<FPoint> const &points)
> > > +               : points_(points) {}
> > > +       int readYaml(const libcamera::YamlObject &params);
> > > +
> > >         void append(double x, double y, const double eps = 1e-6);
> > >         void prepend(double x, double y, const double eps = 1e-6);
> > > +
> > >         Interval domain() const;
> > >         Interval range() const;
> > > +
> > >         bool empty() const;
> > > -       /*
> > > -        * Evaluate Pwl, optionally supplying an initial guess for the
> > > -        * "span". The "span" may be optionally be updated.  If you want to know
> > > -        * the "span" value but don't have an initial guess you can set it to
> > > -        * -1.
> > > -        */
> > > +
> > >         double eval(double x, int *spanPtr = nullptr,
> > >                     bool updateSpan = true) const;
> > > -       /*
> > > -        * Find perpendicular closest to xy, starting from span+1 so you can
> > > -        * call it repeatedly to check for multiple closest points (set span to
> > > -        * -1 on the first call). Also returns "pseudo" perpendiculars; see
> > > -        * PerpType enum.
> > > -        */
> > > -       enum class PerpType {
> > > -               None, /* no perpendicular found */
> > > -               Start, /* start of Pwl is closest point */
> > > -               End, /* end of Pwl is closest point */
> > > -               Vertex, /* vertex of Pwl is closest point */
> > > -               Perpendicular /* true perpendicular found */
> > > -       };
> > > -       PerpType invert(Point const &xy, Point &perp, int &span,
> > > +
> > > +       PerpType invert(FPoint const &xy, FPoint &perp, int &span,
> > >                         const double eps = 1e-6) const;
> > > -       /*
> > > -        * Compute the inverse function. Indicate if it is a proper (true)
> > > -        * inverse, or only a best effort (e.g. input was non-monotonic).
> > > -        */
> > >         Pwl inverse(bool *trueInverse = nullptr, const double eps = 1e-6) const;
> > > -       /* Compose two Pwls together, doing "this" first and "other" after. */
> > >         Pwl compose(Pwl const &other, const double eps = 1e-6) const;
> > > -       /* Apply function to (x,y) values at every control point. */
> > > +
> > >         void map(std::function<void(double x, double y)> f) const;
> > > -       /*
> > > -        * Apply function to (x, y0, y1) values wherever either Pwl has a
> > > -        * control point.
> > > -        */
> > > +
> > >         static void map2(Pwl const &pwl0, Pwl const &pwl1,
> > >                          std::function<void(double x, double y0, double y1)> f);
> > > -       /*
> > > -        * Combine two Pwls, meaning we create a new Pwl where the y values are
> > > -        * given by running f wherever either has a knot.
> > > -        */
> > > +
> > >         static Pwl
> > >         combine(Pwl const &pwl0, Pwl const &pwl1,
> > >                 std::function<double(double x, double y0, double y1)> f,
> > >                 const double eps = 1e-6);
> > > -       /*
> > > -        * Make "this" match (at least) the given domain. Any extension my be
> > > -        * clipped or linear.
> > > -        */
> > > +
> > >         void matchDomain(Interval const &domain, bool clip = true,
> > >                          const double eps = 1e-6);
> > > +
> > >         Pwl &operator*=(double d);
> > > -       void debug(FILE *fp = stdout) const;
> > > +
> > > +       std::string toString() const;
> > >
> > >  private:
> > >         int findSpan(double x, int span) const;
> > > -       std::vector<Point> points_;
> > > +       std::vector<FPoint> points_;
> > >  };
> > > +
> > > +} /* namespace ipa */
> > > +
> > > +} /* namespace libcamera */
> > > --
> > > 2.39.2
> > >


More information about the libcamera-devel mailing list