[PATCH v5 4/8] libtuning: Use logging framework in ctt_awb.awb()
Laurent Pinchart
laurent.pinchart at ideasonboard.com
Mon Dec 9 03:06:23 CET 2024
Hi Stefan,
Thank you for the patch.
On Fri, Dec 06, 2024 at 03:52:24PM +0100, Stefan Klug wrote:
> To be able to use the awb function copied from the Raspberry Pi tuning
> scripts in the libtuning code, we need to remove the Cam object. Use the
> logging framework to replace all accesses to Cam.log.
>
> Signed-off-by: Stefan Klug <stefan.klug at ideasonboard.com>
> Reviewed-by: Kieran Bingham <kieran.bingham at ideasonboard.com>
> Reviewed-by: Paul Elder <paul.elder at ideasonboard.com>
>
> ---
> Changes in v5:
> - Replace format() with f-strings
> ---
> utils/tuning/libtuning/ctt_awb.py | 50 ++++++++++++++++---------------
> 1 file changed, 26 insertions(+), 24 deletions(-)
>
> diff --git a/utils/tuning/libtuning/ctt_awb.py b/utils/tuning/libtuning/ctt_awb.py
> index abf22321a0ea..899f204da8cf 100644
> --- a/utils/tuning/libtuning/ctt_awb.py
> +++ b/utils/tuning/libtuning/ctt_awb.py
> @@ -4,6 +4,8 @@
> #
> # camera tuning tool for AWB
>
> +import logging
> +
> import matplotlib.pyplot as plt
> from bisect import bisect_left
> from scipy.optimize import fmin
> @@ -11,6 +13,7 @@ import numpy as np
>
> from .image import Image
>
> +logger = logging.getLogger(__name__)
>
> """
> obtain piecewise linear approximation for colour curve
> @@ -39,7 +42,7 @@ def awb(Cam, cal_cr_list, cal_cb_list, plot):
> rb_raw = []
> rbs_hat = []
> for Img in imgs:
> - Cam.log += '\nProcessing '+Img.name
> + logger.info(f'Processing {Img.name}')
> """
> get greyscale patches with alsc applied if alsc enabled.
> Note: if alsc is disabled then colour_cals will be set to None and the
> @@ -51,7 +54,7 @@ def awb(Cam, cal_cr_list, cal_cb_list, plot):
> """
> r_g = np.mean(r_patchs/g_patchs)
> b_g = np.mean(b_patchs/g_patchs)
> - Cam.log += '\n r : {:.4f} b : {:.4f}'.format(r_g, b_g)
> + logger.info(f' r : {r_g:.4f} b : {b_g:.4f}')
> """
> The curve tends to be better behaved in so-called hatspace.
> R, B, G represent the individual channels. The colour curve is plotted in
> @@ -74,12 +77,11 @@ def awb(Cam, cal_cr_list, cal_cb_list, plot):
> """
> r_g_hat = r_g/(1+r_g+b_g)
> b_g_hat = b_g/(1+r_g+b_g)
> - Cam.log += '\n r_hat : {:.4f} b_hat : {:.4f}'.format(r_g_hat, b_g_hat)
> - rbs_hat.append((r_g_hat, b_g_hat, Img.col))
> + logger.info(f' r_hat : {r_g_hat:.4f} b_hat : {b_g_hat:.4f}')
> + rbs_hat.append((r_g_hat, b_g_hat, Img.color))
With a mention of this change in the commit message,
Reviewed-by: Laurent Pinchart <laurent.pinchart at ideasonboard.com>
> rb_raw.append((r_g, b_g))
> - Cam.log += '\n'
>
> - Cam.log += '\nFinished processing images'
> + logger.info('Finished processing images')
> """
> sort all lits simultaneously by r_hat
> """
> @@ -95,7 +97,7 @@ def awb(Cam, cal_cr_list, cal_cb_list, plot):
> fit quadratic fit to r_g hat and b_g_hat
> """
> a, b, c = np.polyfit(rbs_hat[0], rbs_hat[1], 2)
> - Cam.log += '\nFit quadratic curve in hatspace'
> + logger.info('Fit quadratic curve in hatspace')
> """
> the algorithm now approximates the shortest distance from each point to the
> curve in dehatspace. Since the fit is done in hatspace, it is easier to
> @@ -151,14 +153,14 @@ def awb(Cam, cal_cr_list, cal_cb_list, plot):
> if (x+y) > (rr+bb):
> dist *= -1
> dists.append(dist)
> - Cam.log += '\nFound closest point on fit line to each point in dehatspace'
> + logger.info('Found closest point on fit line to each point in dehatspace')
> """
> calculate wiggle factors in awb. 10% added since this is an upper bound
> """
> transverse_neg = - np.min(dists) * 1.1
> transverse_pos = np.max(dists) * 1.1
> - Cam.log += '\nTransverse pos : {:.5f}'.format(transverse_pos)
> - Cam.log += '\nTransverse neg : {:.5f}'.format(transverse_neg)
> + logger.info(f'Transverse pos : {transverse_pos:.5f}')
> + logger.info(f'Transverse neg : {transverse_neg:.5f}')
> """
> set minimum transverse wiggles to 0.1 .
> Wiggle factors dictate how far off of the curve the algorithm searches. 0.1
> @@ -167,10 +169,10 @@ def awb(Cam, cal_cr_list, cal_cb_list, plot):
> """
> if transverse_pos < 0.01:
> transverse_pos = 0.01
> - Cam.log += '\nForced transverse pos to 0.01'
> + logger.info('Forced transverse pos to 0.01')
> if transverse_neg < 0.01:
> transverse_neg = 0.01
> - Cam.log += '\nForced transverse neg to 0.01'
> + logger.info('Forced transverse neg to 0.01')
>
> """
> generate new b_hat values at each r_hat according to fit
> @@ -202,25 +204,25 @@ def awb(Cam, cal_cr_list, cal_cb_list, plot):
> i = len(c_fit) - 1
> while i > 0:
> if c_fit[i] > c_fit[i-1]:
> - Cam.log += '\nColour temperature increase found\n'
> - Cam.log += '{} K at r = {} to '.format(c_fit[i-1], r_fit[i-1])
> - Cam.log += '{} K at r = {}'.format(c_fit[i], r_fit[i])
> + logger.info('Colour temperature increase found')
> + logger.info(f'{c_fit[i - 1]} K at r = {r_fit[i - 1]} to ')
> + logger.info(f'{c_fit[i]} K at r = {r_fit[i]}')
> """
> if colour temperature increases then discard point furthest from
> the transformed fit (dehatspace)
> """
> error_1 = abs(dists[i-1])
> error_2 = abs(dists[i])
> - Cam.log += '\nDistances from fit:\n'
> - Cam.log += '{} K : {:.5f} , '.format(c_fit[i], error_1)
> - Cam.log += '{} K : {:.5f}'.format(c_fit[i-1], error_2)
> + logger.info('Distances from fit:')
> + logger.info(f'{c_fit[i]} K : {error_1:.5f}')
> + logger.info(f'{c_fit[i - 1]} K : {error_2:.5f}')
> """
> find bad index
> note that in python false = 0 and true = 1
> """
> bad = i - (error_1 < error_2)
> - Cam.log += '\nPoint at {} K deleted as '.format(c_fit[bad])
> - Cam.log += 'it is furthest from fit'
> + logger.info(f'Point at {c_fit[bad]} K deleted as ')
> + logger.info('it is furthest from fit')
> """
> delete bad point
> """
> @@ -239,12 +241,12 @@ def awb(Cam, cal_cr_list, cal_cb_list, plot):
> return formatted ct curve, ordered by increasing colour temperature
> """
> ct_curve = list(np.array(list(zip(b_fit, r_fit, c_fit))).flatten())[::-1]
> - Cam.log += '\nFinal CT curve:'
> + logger.info('Final CT curve:')
> for i in range(len(ct_curve)//3):
> j = 3*i
> - Cam.log += '\n ct: {} '.format(ct_curve[j])
> - Cam.log += ' r: {} '.format(ct_curve[j+1])
> - Cam.log += ' b: {} '.format(ct_curve[j+2])
> + logger.info(f' ct: {ct_curve[j]} ')
> + logger.info(f' r: {ct_curve[j + 1]} ')
> + logger.info(f' b: {ct_curve[j + 2]} ')
>
> """
> plotting code for debug
--
Regards,
Laurent Pinchart
More information about the libcamera-devel
mailing list