[PATCH 2/5] libcamera: Add ClockRecovery class to generate wallclock timestamps

Barnabás Pőcze pobrn at protonmail.com
Thu Dec 12 18:56:11 CET 2024


Hi


2024. december 6., péntek 15:27 keltezéssel, David Plowman <david.plowman at raspberrypi.com> írta:

> The ClockRecovery class takes pairs of timestamps from two different
> clocks, and models the second ("output") clock from the first ("input")
> clock.
> 
> We can use it, in particular, to get a good wallclock estimate for a
> frame's SensorTimestamp.
> 
> Signed-off-by: David Plowman <david.plowman at raspberrypi.com>
> ---
>  include/libcamera/internal/clock_recovery.h |  72 +++++++
>  include/libcamera/internal/meson.build      |   1 +
>  src/libcamera/clock_recovery.cpp            | 207 ++++++++++++++++++++
>  src/libcamera/meson.build                   |   1 +
>  4 files changed, 281 insertions(+)
>  create mode 100644 include/libcamera/internal/clock_recovery.h
>  create mode 100644 src/libcamera/clock_recovery.cpp
> 
> diff --git a/include/libcamera/internal/clock_recovery.h b/include/libcamera/internal/clock_recovery.h
> new file mode 100644
> index 00000000..c874574e
> --- /dev/null
> +++ b/include/libcamera/internal/clock_recovery.h
> @@ -0,0 +1,72 @@
> +/* SPDX-License-Identifier: BSD-2-Clause */
> +/*
> + * Copyright (C) 2024, Raspberry Pi Ltd
> + *
> + * Camera recovery algorithm
> + */
> +#pragma once
> +
> +#include <stdint.h>
> +
> +namespace libcamera {
> +
> +class ClockRecovery
> +{
> +public:
> +	ClockRecovery();
> +
> +	/* Set configuration parameters. */
> +	void configure(unsigned int numPts = 100, unsigned int maxJitter = 2000, unsigned int minPts = 10,
> +		       unsigned int errorThreshold = 50000);
> +	/* Erase all history and restart the fitting process. */
> +	void reset();
> +
> +	/*
> +	 * Add a new input clock / output clock sample, taking the input from the Linux
> +	 * CLOCK_BOOTTIME and the output from the CLOCK_REALTIME.
> +	 */
> +	void addSample();
> +	/*
> +	 * Add a new input clock / output clock sample, specifying the clock times exactly. Use this
> +	 * when you want to use clocks other than the ones described above.
> +	 */
> +	void addSample(uint64_t input, uint64_t output);
> +	/* Calculate the output clock value for this input. */
> +	uint64_t getOutput(uint64_t input);
> +
> +private:
> +	unsigned int numPts_; /* how many samples contribute to the history */
> +	unsigned int maxJitter_; /* smooth out any jitter larger than this immediately */
> +	unsigned int minPts_; /* number of samples below which we treat clocks as 1:1 */
> +	unsigned int errorThreshold_; /* reset everything when the error exceeds this */
> +
> +	unsigned int count_; /* how many samples seen (up to numPts_) */
> +	uint64_t inputBase_; /* subtract this from all input values, just to make the numbers easier */
> +	uint64_t outputBase_; /* as above, for the output */
> +
> +	uint64_t lastInput_; /* the previous input sample */
> +	uint64_t lastOutput_; /* the previous output sample */
> +
> +	/*
> +	 * We do a linear regression of y against x, where:
> +	 * x is the value input - inputBase_, and
> +	 * y is the value output - outputBase_ - x.
> +	 * We additionally subtract x from y so that y "should" be zero, again making the numnbers easier.
> +	 */
> +	double xAve_; /* average x value seen so far */
> +	double yAve_; /* average y value seen so far */
> +	double x2Ave_; /* average x^2 value seen so far */
> +	double xyAve_; /* average x*y value seen so far */
> +
> +	/*
> +	 * Once we've seen more than minPts_ samples, we recalculate the slope and offset according
> +	 * to the linear regression normal equations.
> +	 */
> +	double slope_; /* latest slope value */
> +	double offset_; /* latest offset value */
> +
> +	/* We use this cumulative error to monitor spontaneous system clock updates. */
> +	double error_;
> +};
> +
> +} /* namespace libcamera */
> diff --git a/include/libcamera/internal/meson.build b/include/libcamera/internal/meson.build
> index 7d6aa8b7..41500636 100644
> --- a/include/libcamera/internal/meson.build
> +++ b/include/libcamera/internal/meson.build
> @@ -11,6 +11,7 @@ libcamera_internal_headers = files([
>      'camera_manager.h',
>      'camera_sensor.h',
>      'camera_sensor_properties.h',
> +    'clock_recovery.h',
>      'control_serializer.h',
>      'control_validator.h',
>      'converter.h',
> diff --git a/src/libcamera/clock_recovery.cpp b/src/libcamera/clock_recovery.cpp
> new file mode 100644
> index 00000000..966599ee
> --- /dev/null
> +++ b/src/libcamera/clock_recovery.cpp
> @@ -0,0 +1,207 @@
> +/* SPDX-License-Identifier: BSD-2-Clause */
> +/*
> + * Copyright (C) 2024, Raspberry Pi Ltd
> + *
> + * Clock recovery algorithm
> + */
> +
> +#include "libcamera/internal/clock_recovery.h"
> +
> +#include <time.h>
> +
> +#include <libcamera/base/log.h>
> +
> +/**
> + * \file clock_recovery.h
> + * \brief Clock recovery - deriving one clock from another independent clock
> + */
> +
> +namespace libcamera {
> +
> +LOG_DEFINE_CATEGORY(ClockRec)
> +
> +/**
> + * \class ClockRecovery
> + * \brief Recover an output clock from an input clock
> + *
> + * The ClockRecovery class derives an output clock from an input clock,
> + * modelling the output clock as being linearly related to the input clock.
> + * For example, we may use it to derive wall clock timestamps from timestamps
> + * measured by the internal system clock which counts local time since boot.
> + *
> + * When pairs of corresponding input and output timestamps are available,
> + * they should be submitted to the model with addSample(). The model will
> + * update, and output clock values for known input clock values can be
> + * obtained using getOutput().
> + *
> + * As a convenience, if the input clock is indeed the time since boot, and the
> + * output clock represents a real wallclock time, then addSample() can be
> + * called with no arguments, and a pair of timestamps will be captured at
> + * that moment.
> + *
> + * The configure() function accepts some configuration parameters to control
> + * the linear fitting process.
> + */
> +
> +/**
> + * \brief Construct a ClockRecovery
> + */
> +ClockRecovery::ClockRecovery()
> +{
> +	configure();
> +	reset();
> +}
> +
> +/**
> + * \brief Set configuration parameters
> + * \param[in] numPts The approximate duration for which the state of the model
> + * is persistent, measured in samples
> + * \param[in] maxJitter New output samples are clamped to no more than this
> + * amount of jitter, to prevent sudden swings from having a large effect
> + * \param[in] minPts The fitted clock model is not used to generate outputs
> + * until this many samples have been received
> + * \param[in] errorThreshold If the accumulated differences between input and
> + * output clocks reaches this amount over a few frames, the model is reset
> + */
> +void ClockRecovery::configure(unsigned int numPts, unsigned int maxJitter, unsigned int minPts,
> +			      unsigned int errorThreshold)
> +{
> +	LOG(ClockRec, Debug)
> +		<< "configure " << numPts << " " << maxJitter << " " << minPts << " " << errorThreshold;
> +
> +	numPts_ = numPts;
> +	maxJitter_ = maxJitter;
> +	minPts_ = minPts;
> +	errorThreshold_ = errorThreshold;
> +}
> +
> +/**
> + * \brief Reset the clock recovery model and start again from scratch
> + */
> +void ClockRecovery::reset()
> +{
> +	LOG(ClockRec, Debug) << "reset";
> +
> +	lastInput_ = 0;
> +	lastOutput_ = 0;
> +	xAve_ = 0;
> +	yAve_ = 0;
> +	x2Ave_ = 0;
> +	xyAve_ = 0;
> +	count_ = 0;
> +	slope_ = 0.0;
> +	offset_ = 0.0;
> +	error_ = 0.0;
> +}
> +
> +/**
> + * \brief Add a sample point to the clock recovery model, for recovering a wall
> + * clock value from the internal system time since boot
> + *
> + * This is a convenience function to make it easy to derive a wall clock value
> + * (using the Linux CLOCK_REALTIME) from the time since the system started
> + * (measured by CLOCK_BOOTTIME).
> + */
> +void ClockRecovery::addSample()
> +{
> +	LOG(ClockRec, Debug) << "addSample";
> +
> +	struct timespec bootTime;
> +	struct timespec wallTime;
> +
> +	/* Get boot and wall clocks in microseconds. */
> +	clock_gettime(CLOCK_BOOTTIME, &bootTime);
> +	clock_gettime(CLOCK_REALTIME, &wallTime);
> +	uint64_t boot = bootTime.tv_sec * 1000000ULL + bootTime.tv_nsec / 1000;
> +	uint64_t wall = wallTime.tv_sec * 1000000ULL + wallTime.tv_nsec / 1000;

It could be that I am missing something that accounts for this, but I am wondering
if it would make sense to sample one of the clocks twice, and average the two samples.
i.e.

  x1 = clock_boottime()
  y = clock_realtime()
  x2 = clock_boottime()

  addSample(midpoint(x1, x2), y)

Otherwise I'd expect a constant offset to be present in the mapping, although
I am not sure if that makes an appreciable difference.


Regards,
Barnabás Pőcze


> +
> +	addSample(boot, wall);
> +}
> +
> +/**
> + * \brief Add a sample point to the clock recovery model, specifying the exact
> + * input and output clock values
> + *
> + * This function should be used for corresponding clocks other than the Linux
> + * BOOTTIME and REALTIME clocks.
> + */
> +void ClockRecovery::addSample(uint64_t input, uint64_t output)
> +{
> +	LOG(ClockRec, Debug) << "addSample " << input << " " << output;
> +
> +	if (count_ == 0) {
> +		inputBase_ = input;
> +		outputBase_ = output;
> +	}
> +
> +	/*
> +	 * We keep an eye on cumulative drift over the last several frames. If this exceeds a
> +	 * threshold, then probably the system clock has been updated and we're going to have to
> +	 * reset everything and start over.
> +	 */
> +	if (lastOutput_) {
> +		int64_t inputDiff = getOutput(input) - getOutput(lastInput_);
> +		int64_t outputDiff = output - lastOutput_;
> +		error_ = error_ * 0.95 + (outputDiff - inputDiff);
> +		if (std::abs(error_) > errorThreshold_) {
> +			reset();
> +			inputBase_ = input;
> +			outputBase_ = output;
> +		}
> +	}
> +	lastInput_ = input;
> +	lastOutput_ = output;
> +
> +	/*
> +	 * Never let the new output value be more than maxJitter_ away from what we would have expected.
> +	 * This is just to reduce the effect of sudden large delays in the measured output.
> +	 */
> +	uint64_t expectedOutput = getOutput(input);
> +	output = std::clamp(output, expectedOutput - maxJitter_, expectedOutput + maxJitter_);
> +
> +	/*
> +	 * We use x, y, x^2 and x*y sums to calculate the best fit line. Here we update them by
> +	 * pretending we have count_ samples at the previous fit, and now one new one. Gradually
> +	 * the effect of the older values gets lost. This is a very simple way of updating the
> +	 * fit (there are much more complicated ones!), but it works well enough. Using averages
> +	 * instead of sums makes the relative effect of old values and the new sample clearer.
> +	 */
> +	double x = static_cast<int64_t>(input - inputBase_);
> +	double y = static_cast<int64_t>(output - outputBase_) - x;
> +	unsigned int count1 = count_ + 1;
> +	xAve_ = (count_ * xAve_ + x) / count1;
> +	yAve_ = (count_ * yAve_ + y) / count1;
> +	x2Ave_ = (count_ * x2Ave_ + x * x) / count1;
> +	xyAve_ = (count_ * xyAve_ + x * y) / count1;
> +
> +	/* Don't update slope and offset until we've seen "enough" sample points. */
> +	if (count_ > minPts_) {
> +		/* These are the standard equations for least squares linear regression. */
> +		slope_ = (count1 * count1 * xyAve_ - count1 * xAve_ * count1 * yAve_) /
> +			 (count1 * count1 * x2Ave_ - count1 * xAve_ * count1 * xAve_);
> +		offset_ = yAve_ - slope_ * xAve_;
> +	}
> +
> +	/* Don't increase count_ above numPts_, as this controls the long-term amount of the residual fit. */
> +	if (count1 < numPts_)
> +		count_++;
> +}
> +
> +/**
> + * \brief Calculate the output clock value according to the model from an input
> + * clock value
> + *
> + * \return Output clock value
> + */
> +uint64_t ClockRecovery::getOutput(uint64_t input)
> +{
> +	double x = static_cast<int64_t>(input - inputBase_);
> +	double y = slope_ * x + offset_;
> +	uint64_t output = y + x + outputBase_;
> +
> +	LOG(ClockRec, Debug) << "getOutput " << input << " " << output;
> +
> +	return output;
> +}
> +
> +} /* namespace libcamera */
> diff --git a/src/libcamera/meson.build b/src/libcamera/meson.build
> index 57fde8a8..4eaa1c8e 100644
> --- a/src/libcamera/meson.build
> +++ b/src/libcamera/meson.build
> @@ -21,6 +21,7 @@ libcamera_internal_sources = files([
>      'byte_stream_buffer.cpp',
>      'camera_controls.cpp',
>      'camera_lens.cpp',
> +    'clock_recovery.cpp',
>      'control_serializer.cpp',
>      'control_validator.cpp',
>      'converter.cpp',
> --
> 2.39.5


More information about the libcamera-devel mailing list