[PATCH v4 3/4] ipa: libipa: pwl: Clean up Pwl class to match libcamera

Kieran Bingham kieran.bingham at ideasonboard.com
Mon Jun 3 13:49:27 CEST 2024


Quoting Paul Elder (2024-05-31 15:43:00)
> Clean up the Pwl class copied from the Raspberry Pi IPA to align it more
> with the libcamera style.
> 
> Signed-off-by: Paul Elder <paul.elder at ideasonboard.com>
> Reviewed-by: Stefan Klug <stefan.klug at ideasonboard.com>
> Acked-by: David Plowman <david.plowman at raspberrypi.com>
> 
> ---
> Changes in v4:
> - update to apply to new copy of pwl
> - add documentation
> - fix doxygen
> 
> No change in v3
> 
> Changes in v2:
> - s/FPoint/PointF/g
> - improve documentation
> - s/matchDomain/extendDomain/

It's not visible in this set of hunks - but there's a PWl capitalisation
issue in findSpan() that could be fixed in this patch.

- "though could review this if large PWls start turning up"
+ "though could review this if large Pwls start turning up"



> ---
>  src/ipa/libipa/pwl.cpp | 268 ++++++++++++++++++++++++++++++++++++-----
>  src/ipa/libipa/pwl.h   | 119 +++++++-----------
>  2 files changed, 285 insertions(+), 102 deletions(-)
> 
> diff --git a/src/ipa/libipa/pwl.cpp b/src/ipa/libipa/pwl.cpp
> index e39123767..945914347 100644
> --- a/src/ipa/libipa/pwl.cpp
> +++ b/src/ipa/libipa/pwl.cpp
> @@ -1,19 +1,113 @@
>  /* SPDX-License-Identifier: BSD-2-Clause */
>  /*
>   * Copyright (C) 2019, Raspberry Pi Ltd
> + * Copyright (C) 2024, Ideas on Board Oy
>   *
> - * piecewise linear functions
> + * Piecewise linear functions
>   */
>  
> +#include "pwl.h"
> +
>  #include <cassert>
>  #include <cmath>
> +#include <sstream>
>  #include <stdexcept>
>  
> -#include "pwl.h"
> +#include <libcamera/geometry.h>
> +
> +/**
> + * \file pwl.h
> + * \brief Piecewise linear functions
> + */
> +
> +namespace libcamera {
> +
> +namespace ipa {
> +
> +/**
> + * \class Pwl
> + * \brief Describe a univariate piecewise linear function in real space
> + */
>  
> -using namespace RPiController;
> +/**
> + * \class Pwl::Interval
> + * \brief Describe an interval in one-dimensional real space
> + */
> +
> +/**
> + * \fn Pwl::Interval::Interval(double _start, double _end)
> + * \brief Construct an interval
> + * \param _start Start of the interval
> + * \param _end End of the interval
> + */
> +
> +/**
> + * \fn Pwl::Interval::contains
> + * \brief Check if a given values falls within the interval

s/values/value/ ?

> + * \param value Value to check
> + */
> +
> +/**
> + * \fn Pwl::Interval::clamp
> + * \brief Clamp a value such that it is within the interval
> + * \param value Value to clamp
> + */
> +
> +/**
> + * \fn Pwl::Interval::len
> + * \brief Compute the length of the interval
> + */
>  
> -int Pwl::read(const libcamera::YamlObject &params)
> +/**
> + * \var Pwl::Interval::start
> + * \brief Start of the interval
> + */
> +
> +/**
> + * \var Pwl::Interval::end
> + * \brief End of the interval
> + */
> +
> +/**
> + * \enum Pwl::PerpType
> + * \brief Type of perpendicular found when inverting a piecewise linear function
> + *
> + * \var Pwl::PerpType::None
> + * \brief No perpendicular found
> + *
> + * \var Pwl::PerpType::Start
> + * \brief Start of Pwl is closest point
> + *
> + * \var Pwl::PerpType::End
> + * \brief End of Pwl is closest point
> + *
> + * \var Pwl::PerpType::Vertex
> + * \brief Vertex of Pwl is closest point
> + *
> + * \var Pwl::PerpType::Perpendicular
> + * \brief True perpendicular found
> + */
> +
> +/**
> + * \fn Pwl::Pwl(std::vector<PointF> const &points)
> + * \brief Construct a piecewise linear function from a list of 2D points
> + * \param points Vector of points from which to construct the piecewise linear function

Do any constraints apply to the ordering of the points?

I assume they have to be in some sort order? should that be
documented?, is it enforced?

Could be as simple as saying "param points Sorted vector of points..."? 

> + */
> +
> +/**
> + * \brief Populate the piecewise linear function from yaml data
> + * \param params Yaml data to populate the piecewise linear function with
> + *
> + * Any existing points in the piecewise linear function will *not* be
> + * overwritten.

Oh!? So they're appended? Are they added in any order? Now I'm confused
What's the use case where we can just add aribtrary points ...

Or ... in fact - I think now I wonder if perhaps they don't have to be
sorted? The Pwl might not require points to be growing in any axis ...?

> + *
> + * The yaml data is expected to be a list with an even number of numerical
> + * elements. These will be parsed in pairs into x and y points in the piecewise
> + * linear function. x must be monotonically increasing.
> + *
> + * \return 0 on success, negative error code otherwise
> + */
> +int Pwl::readYaml(const libcamera::YamlObject &params)
>  {
>         if (!params.size() || params.size() % 2)
>                 return -EINVAL;
> @@ -31,29 +125,55 @@ int Pwl::read(const libcamera::YamlObject &params)
>                 if (!y)
>                         return -EINVAL;
>  
> -               points_.push_back(Point(*x, *y));
> +               points_.push_back(PointF(*x, *y));

I think I would have split out clean ups from conversions. Probably with
the conversion from Point to PointF first. But maybe not so critical...

>         }
>  
>         return 0;
>  }
>  
> +/**
> + * \brief Append a point to the end of the piecewise linear function
> + * \param x x-coordinate of the point to add to the piecewise linear function
> + * \param y y-coordinate of the point to add to the piecewise linear function
> + * \param eps Epsilon for the minimum x distance between points (optional)
> + *
> + * The point's x-coordinate must be greater than the x-coordinate of the last
> + * (= greatest) point already in the piecewise linear function.
> + */
>  void Pwl::append(double x, double y, const double eps)
>  {
>         if (points_.empty() || points_.back().x + eps < x)
> -               points_.push_back(Point(x, y));
> +               points_.push_back(PointF(x, y));

Aha - here's where some sort ordering becomes enforced?

>  }
>  
> +/**
> + * \brief Prepend a point to the beginning of the piecewise linear function
> + * \param x x-coordinate of the point to add to the piecewise linear function
> + * \param y y-coordinate of the point to add to the piecewise linear function
> + * \param eps Epsilon for the minimum x distance between points (optional)
> + *
> + * The point's x-coordinate must be less than the x-coordinate of the first
> + * (= smallest) point already in the piecewise linear function.
> + */
>  void Pwl::prepend(double x, double y, const double eps)
>  {
>         if (points_.empty() || points_.front().x - eps > x)
> -               points_.insert(points_.begin(), Point(x, y));
> +               points_.insert(points_.begin(), PointF(x, y));
>  }
>  
> +/**
> + * \brief Get the domain of the piecewise linear function
> + * \return An interval representing the domain
> + */
>  Pwl::Interval Pwl::domain() const
>  {
>         return Interval(points_[0].x, points_[points_.size() - 1].x);
>  }
>  
> +/**
> + * \brief Get the range of the piecewise linear function
> + * \return An interval representing the range
> + */
>  Pwl::Interval Pwl::range() const
>  {
>         double lo = points_[0].y, hi = lo;
> @@ -62,11 +182,28 @@ Pwl::Interval Pwl::range() const
>         return Interval(lo, hi);
>  }
>  
> +/**
> + * \brief Check if the piecewise linear function is empty
> + * \return True if there are no points in the function, false otherwise
> + */
>  bool Pwl::empty() const
>  {
>         return points_.empty();
>  }
>  
> +/**
> + * \brief Evaluate the piecewise linear function
> + * \param[in] x The x value to input into the function
> + * \param[inout] spanPtr Initial guess for span
> + * \param[in] updateSpan Set to true to update spanPtr
> + *
> + * Evaluate Pwl, optionally supplying an initial guess for the
> + * "span". The "span" may be optionally be updated.  If you want to know
> + * the "span" value but don't have an initial guess you can set it to
> + * -1.
> + *
> + *  \return The result of evaluating the piecewise linear function at position \a x
> + */
>  double Pwl::eval(double x, int *spanPtr, bool updateSpan) const
>  {
>         int span = findSpan(x, spanPtr && *spanPtr != -1 ? *spanPtr : points_.size() / 2 - 1);

Can that line be wrapped better for clarity?
	int span = findSpan(x, spanPtr && *spanPtr != -1 
				? *spanPtr
				: points_.size() / 2 - 1);
				
But I bet that still won't make checkstyle happy anyway so either way.


> @@ -96,16 +233,29 @@ int Pwl::findSpan(double x, int span) const
>         return span;
>  }
>  
> -Pwl::PerpType Pwl::invert(Point const &xy, Point &perp, int &span,
> +/**
> + * \brief Find perpendicular closest to a given point
> + * \param[in] xy Point to find the perpendicular to
> + * \param[out] perp The found perpendicular

I can't hear 'perp' without thinking we're in a cheesy american crime
movie... :-)

  "Sarge, We found the perp..."

> + * \param[inout] span The span+1 to start searching from
> + * \param[in] eps Epsilon for the minimum x distance between points (optional)
> + *
> + * Find perpendicular closest to \a xy, starting from \a span+1 so you can call
> + * it repeatedly to check for multiple closest points (set span to -1 on the
> + * first call). Also returns "pseudo" perpendiculars; see PerpType enum.
> + *

'span+1' is a bit ... something? In fact, isn't the parameter the span-1
?

I guess it could be 
 * param[inout] span The span left of the point to start searching from

But at that point it's not about 'searching' is it ? Just starting?


> + * \return Type of perpendicular found
> + */
> +Pwl::PerpType Pwl::invert(PointF const &xy, PointF &perp, int &span,
>                           const double eps) const
>  {
>         assert(span >= -1);
>         bool prevOffEnd = false;
>         for (span = span + 1; span < (int)points_.size() - 1; span++) {
> -               Point spanVec = points_[span + 1] - points_[span];
> +               PointF spanVec = points_[span + 1] - points_[span];
>                 double t = ((xy - points_[span]) % spanVec) / spanVec.len2();
> -               if (t < -eps) /* off the start of this span */
> -               {
> +               if (t < -eps) {
> +                       /* off the start of this span */
>                         if (span == 0) {
>                                 perp = points_[span];
>                                 return PerpType::Start;
> @@ -113,15 +263,15 @@ Pwl::PerpType Pwl::invert(Point const &xy, Point &perp, int &span,
>                                 perp = points_[span];
>                                 return PerpType::Vertex;
>                         }
> -               } else if (t > 1 + eps) /* off the end of this span */
> -               {
> +               } else if (t > 1 + eps) {
> +                       /* off the end of this span */
>                         if (span == (int)points_.size() - 2) {
>                                 perp = points_[span + 1];
>                                 return PerpType::End;
>                         }
>                         prevOffEnd = true;
> -               } else /* a true perpendicular */
> -               {
> +               } else {
> +                       /* a true perpendicular */
>                         perp = points_[span] + spanVec * t;
>                         return PerpType::Perpendicular;
>                 }
> @@ -129,25 +279,36 @@ Pwl::PerpType Pwl::invert(Point const &xy, Point &perp, int &span,
>         return PerpType::None;
>  }
>  
> +/**
> + * \brief Compute the inverse function
> + * \param[out] trueInverse True if the result is a proper/true inverse
> + * \param[in] eps Epsilon for the minimum x distance between points (optional)
> + *
> + * Indicate if it is a proper (true) inverse, or only a best effort (e.g.
> + * input was non-monotonic).
> + *
> + * \return The inverse piecewise linear function
> + */
>  Pwl Pwl::inverse(bool *trueInverse, const double eps) const
>  {
>         bool appended = false, prepended = false, neither = false;
>         Pwl inverse;
>  
> -       for (Point const &p : points_) {
> -               if (inverse.empty())
> +       for (PointF const &p : points_) {
> +               if (inverse.empty()) {
>                         inverse.append(p.y, p.x, eps);
> -               else if (std::abs(inverse.points_.back().x - p.y) <= eps ||
> -                        std::abs(inverse.points_.front().x - p.y) <= eps)
> +               } else if (std::abs(inverse.points_.back().x - p.y) <= eps ||
> +                          std::abs(inverse.points_.front().x - p.y) <= eps) {
>                         /* do nothing */;
> -               else if (p.y > inverse.points_.back().x) {
> +               } else if (p.y > inverse.points_.back().x) {
>                         inverse.append(p.y, p.x, eps);
>                         appended = true;
>                 } else if (p.y < inverse.points_.front().x) {
>                         inverse.prepend(p.y, p.x, eps);
>                         prepended = true;
> -               } else
> +               } else {
>                         neither = true;
> +               }
>         }
>  
>         /*
> @@ -161,18 +322,27 @@ Pwl Pwl::inverse(bool *trueInverse, const double eps) const
>         return inverse;
>  }
>  
> +/**
> + * \brief Compose two piecewise linear functions together
> + * \param[in] other The "other" piecewise linear function
> + * \param[in] eps Epsilon for the minimum x distance between points (optional)
> + *
> + * The "this" function is done first, and "other" after.

Does compose mean merged? or concatenated one after another?

Can it be clearer? As a reader (without reading the implementation) I
don't know the answer from the documentation here ...


> + *
> + * \return The composed piecewise linear function
> + */
>  Pwl Pwl::compose(Pwl const &other, const double eps) const
>  {
>         double thisX = points_[0].x, thisY = points_[0].y;
>         int thisSpan = 0, otherSpan = other.findSpan(thisY, 0);
>         Pwl result({ { thisX, other.eval(thisY, &otherSpan, false) } });
> +
>         while (thisSpan != (int)points_.size() - 1) {
>                 double dx = points_[thisSpan + 1].x - points_[thisSpan].x,
>                        dy = points_[thisSpan + 1].y - points_[thisSpan].y;
>                 if (std::abs(dy) > eps &&
>                     otherSpan + 1 < (int)other.points_.size() &&
> -                   points_[thisSpan + 1].y >=
> -                           other.points_[otherSpan + 1].x + eps) {
> +                   points_[thisSpan + 1].y >= other.points_[otherSpan + 1].x + eps) {
>                         /*
>                          * next control point in result will be where this
>                          * function's y reaches the next span in other
> @@ -206,18 +376,27 @@ Pwl Pwl::compose(Pwl const &other, const double eps) const
>         return result;
>  }
>  
> +/**
> + * \brief Apply function to (x,y) values at every control point
> + * \param f Function to be applied
> + */
>  void Pwl::map(std::function<void(double x, double y)> f) const
>  {
>         for (auto &pt : points_)
>                 f(pt.x, pt.y);
>  }
>  
> +/**
> + * \brief Apply function to (x, y0, y1) values wherever either Pwl has a
> + * control point.
> + */
>  void Pwl::map2(Pwl const &pwl0, Pwl const &pwl1,
>                std::function<void(double x, double y0, double y1)> f)
>  {
>         int span0 = 0, span1 = 0;
>         double x = std::min(pwl0.points_[0].x, pwl1.points_[0].x);
>         f(x, pwl0.eval(x, &span0, false), pwl1.eval(x, &span1, false));
> +
>         while (span0 < (int)pwl0.points_.size() - 1 ||
>                span1 < (int)pwl1.points_.size() - 1) {
>                 if (span0 == (int)pwl0.points_.size() - 1)
> @@ -232,6 +411,12 @@ void Pwl::map2(Pwl const &pwl0, Pwl const &pwl1,
>         }
>  }
>  
> +/**
> + * \brief Combine two Pwls
> + *
> + * Create a new Pwl where the y values are given by running f wherever either
> + * has a knot.
> + */
>  Pwl Pwl::combine(Pwl const &pwl0, Pwl const &pwl1,
>                  std::function<double(double x, double y0, double y1)> f,
>                  const double eps)
> @@ -243,7 +428,19 @@ Pwl Pwl::combine(Pwl const &pwl0, Pwl const &pwl1,
>         return result;
>  }
>  
> -void Pwl::matchDomain(Interval const &domain, bool clip, const double eps)
> +/**
> + * \brief Extend the domain of the piecewise linear function
> + * \param[in] domain The domain to extend to
> + * \param[in] clip True to keep the existing edge y values, false to extrapolate
> + * \param[in] eps Epsilon for the minimum x distance between points (optional)
> + *
> + * Extend the domain of the piecewise linear function to match \a domain. If \a
> + * clip is set to true then the y values of the new edges will be the same as
> + * the existing y values of the edge points of the pwl. If false, then the y
> + * values will be extrapolated linearly from the existing edge points of the
> + * pwl.
> + */
> +void Pwl::extendDomain(Interval const &domain, bool clip, const double eps)
>  {
>         int span = 0;
>         prepend(domain.start, eval(clip ? points_[0].x : domain.start, &span),
> @@ -253,6 +450,11 @@ void Pwl::matchDomain(Interval const &domain, bool clip, const double eps)
>                eps);
>  }
>  
> +/**
> + * \brief Multiply the piecewise linear function
> + * \param d Scalar multiplier to multiply the function by
> + * \return This function, after it has been multiplied by \a d
> + */
>  Pwl &Pwl::operator*=(double d)
>  {
>         for (auto &pt : points_)
> @@ -260,10 +462,20 @@ Pwl &Pwl::operator*=(double d)
>         return *this;
>  }
>  
> -void Pwl::debug(FILE *fp) const
> +/**
> + * \brief Assemble and return a string describing the piecewise linear function
> + * \return A string describing the piecewise linear function
> + */
> +std::string Pwl::toString() const
>  {
> -       fprintf(fp, "Pwl {\n");
> +       std::stringstream ss;
> +       ss << "Pwl { ";
>         for (auto &p : points_)
> -               fprintf(fp, "\t(%g, %g)\n", p.x, p.y);
> -       fprintf(fp, "}\n");
> +               ss << "(" << p.x << ", " << p.y << ") ";
> +       ss << "}";
> +       return ss.str();
>  }
> +
> +} /* namespace ipa */
> +
> +} /* namespace libcamera */
> diff --git a/src/ipa/libipa/pwl.h b/src/ipa/libipa/pwl.h
> index 7d5e7e4d3..9b716c788 100644
> --- a/src/ipa/libipa/pwl.h
> +++ b/src/ipa/libipa/pwl.h
> @@ -2,126 +2,97 @@
>  /*
>   * Copyright (C) 2019, Raspberry Pi Ltd
>   *
> - * piecewise linear functions interface
> + * Piecewise linear functions interface
>   */
>  #pragma once
>  
>  #include <functional>
>  #include <math.h>
> +#include <string>
>  #include <vector>
>  
> +#include <libcamera/geometry.h>
> +
>  #include "libcamera/internal/yaml_parser.h"
>  
> -namespace RPiController {
> +namespace libcamera {
> +
> +namespace ipa {
>  
>  class Pwl
>  {
>  public:
> +       enum class PerpType {
> +               None,
> +               Start,
> +               End,
> +               Vertex,
> +               Perpendicular,
> +       };
> +
>         struct Interval {
>                 Interval(double _start, double _end)
> -                       : start(_start), end(_end)
> -               {
> -               }
> -               double start, end;
> +                       : start(_start), end(_end) {}
> +
>                 bool contains(double value)
>                 {
>                         return value >= start && value <= end;
>                 }
> -               double clip(double value)
> +
> +               double clamp(double value)
>                 {
>                         return value < start ? start
>                                              : (value > end ? end : value);
>                 }
> +
>                 double len() const { return end - start; }
> +
> +               double start, end;
>         };
> -       struct Point {
> -               Point() : x(0), y(0) {}
> -               Point(double _x, double _y)
> -                       : x(_x), y(_y) {}
> -               double x, y;
> -               Point operator-(Point const &p) const
> -               {
> -                       return Point(x - p.x, y - p.y);
> -               }
> -               Point operator+(Point const &p) const
> -               {
> -                       return Point(x + p.x, y + p.y);
> -               }
> -               double operator%(Point const &p) const
> -               {
> -                       return x * p.x + y * p.y;
> -               }
> -               Point operator*(double f) const { return Point(x * f, y * f); }
> -               Point operator/(double f) const { return Point(x / f, y / f); }
> -               double len2() const { return x * x + y * y; }
> -               double len() const { return sqrt(len2()); }
> -       };
> +
>         Pwl() {}
> -       Pwl(std::vector<Point> const &points) : points_(points) {}
> -       int read(const libcamera::YamlObject &params);
> +       Pwl(std::vector<PointF> const &points)
> +               : points_(points) {}
> +       int readYaml(const libcamera::YamlObject &params);
> +
>         void append(double x, double y, const double eps = 1e-6);
>         void prepend(double x, double y, const double eps = 1e-6);
> +
>         Interval domain() const;
>         Interval range() const;
> +
>         bool empty() const;
> -       /*
> -        * Evaluate Pwl, optionally supplying an initial guess for the
> -        * "span". The "span" may be optionally be updated.  If you want to know
> -        * the "span" value but don't have an initial guess you can set it to
> -        * -1.
> -        */
> +
>         double eval(double x, int *spanPtr = nullptr,
>                     bool updateSpan = true) const;
> -       /*
> -        * Find perpendicular closest to xy, starting from span+1 so you can
> -        * call it repeatedly to check for multiple closest points (set span to
> -        * -1 on the first call). Also returns "pseudo" perpendiculars; see
> -        * PerpType enum.
> -        */
> -       enum class PerpType {
> -               None, /* no perpendicular found */
> -               Start, /* start of Pwl is closest point */
> -               End, /* end of Pwl is closest point */
> -               Vertex, /* vertex of Pwl is closest point */
> -               Perpendicular /* true perpendicular found */
> -       };
> -       PerpType invert(Point const &xy, Point &perp, int &span,
> +
> +       PerpType invert(PointF const &xy, PointF &perp, int &span,
>                         const double eps = 1e-6) const;
> -       /*
> -        * Compute the inverse function. Indicate if it is a proper (true)
> -        * inverse, or only a best effort (e.g. input was non-monotonic).
> -        */
>         Pwl inverse(bool *trueInverse = nullptr, const double eps = 1e-6) const;
> -       /* Compose two Pwls together, doing "this" first and "other" after. */
>         Pwl compose(Pwl const &other, const double eps = 1e-6) const;
> -       /* Apply function to (x,y) values at every control point. */
> +
>         void map(std::function<void(double x, double y)> f) const;
> -       /*
> -        * Apply function to (x, y0, y1) values wherever either Pwl has a
> -        * control point.
> -        */
> +
>         static void map2(Pwl const &pwl0, Pwl const &pwl1,
>                          std::function<void(double x, double y0, double y1)> f);
> -       /*
> -        * Combine two Pwls, meaning we create a new Pwl where the y values are
> -        * given by running f wherever either has a knot.
> -        */
> +
>         static Pwl
>         combine(Pwl const &pwl0, Pwl const &pwl1,
>                 std::function<double(double x, double y0, double y1)> f,
>                 const double eps = 1e-6);
> -       /*
> -        * Make "this" match (at least) the given domain. Any extension my be
> -        * clipped or linear.
> -        */
> -       void matchDomain(Interval const &domain, bool clip = true,
> -                        const double eps = 1e-6);
> +
> +       void extendDomain(Interval const &domain, bool clip = true,
> +                         const double eps = 1e-6);
> +
>         Pwl &operator*=(double d);
> -       void debug(FILE *fp = stdout) const;
> +
> +       std::string toString() const;
>  
>  private:
>         int findSpan(double x, int span) const;
> -       std::vector<Point> points_;
> +       std::vector<PointF> points_;
>  };
>  
> -} /* namespace RPiController */
> +} /* namespace ipa */
> +
> +} /* namespace libcamera */
> -- 
> 2.39.2
>


More information about the libcamera-devel mailing list