[PATCH v5 3/4] ipa: libipa: pwl: Clean up Pwl class to match libcamera
Paul Elder
paul.elder at ideasonboard.com
Fri Jun 7 09:57:13 CEST 2024
Clean up the Pwl class copied from the Raspberry Pi IPA to align it more
with the libcamera style.
Signed-off-by: Paul Elder <paul.elder at ideasonboard.com>
Reviewed-by: Stefan Klug <stefan.klug at ideasonboard.com>
Acked-by: David Plowman <david.plowman at raspberrypi.com>
---
Changes in v5:
- fix documentation order
- fix some typos
- add the Vector-based PointF
Changes in v4:
- update to apply to new copy of pwl
- add documentation
- fix doxygen
No change in v3
Changes in v2:
- s/FPoint/PointF/g
- improve documentation
- s/matchDomain/extendDomain/
---
src/ipa/libipa/pwl.cpp | 365 +++++++++++++++++++++++++++++++++--------
src/ipa/libipa/pwl.h | 123 ++++++--------
2 files changed, 342 insertions(+), 146 deletions(-)
diff --git a/src/ipa/libipa/pwl.cpp b/src/ipa/libipa/pwl.cpp
index e39123767..8f8ee17e8 100644
--- a/src/ipa/libipa/pwl.cpp
+++ b/src/ipa/libipa/pwl.cpp
@@ -1,19 +1,120 @@
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi Ltd
+ * Copyright (C) 2024, Ideas on Board Oy
*
- * piecewise linear functions
+ * Piecewise linear functions
*/
+#include "pwl.h"
+
#include <cassert>
#include <cmath>
+#include <sstream>
#include <stdexcept>
-#include "pwl.h"
+#include <libcamera/geometry.h>
+
+/**
+ * \file pwl.h
+ * \brief Piecewise linear functions
+ */
+
+namespace libcamera {
+
+namespace ipa {
+
+/**
+ * \class Pwl
+ * \brief Describe a univariate piecewise linear function in real space
+ */
+
+/**
+ * \typedef Pwl::PointF
+ * \brief Describe a point in two-dimensional real space
+ */
+
+/**
+ * \enum Pwl::PerpType
+ * \brief Type of perpendicular found when inverting a piecewise linear function
+ *
+ * \var Pwl::PerpType::None
+ * \brief No perpendicular found
+ *
+ * \var Pwl::PerpType::Start
+ * \brief Start of Pwl is closest point
+ *
+ * \var Pwl::PerpType::End
+ * \brief End of Pwl is closest point
+ *
+ * \var Pwl::PerpType::Vertex
+ * \brief Vertex of Pwl is closest point
+ *
+ * \var Pwl::PerpType::Perpendicular
+ * \brief True perpendicular found
+ */
-using namespace RPiController;
+/**
+ * \class Pwl::Interval
+ * \brief Describe an interval in one-dimensional real space
+ */
+
+/**
+ * \fn Pwl::Interval::Interval(double _start, double _end)
+ * \brief Construct an interval
+ * \param _start Start of the interval
+ * \param _end End of the interval
+ */
+
+/**
+ * \fn Pwl::Interval::contains
+ * \brief Check if a given value falls within the interval
+ * \param value Value to check
+ */
+
+/**
+ * \fn Pwl::Interval::clamp
+ * \brief Clamp a value such that it is within the interval
+ * \param value Value to clamp
+ */
+
+/**
+ * \fn Pwl::Interval::len
+ * \brief Compute the length of the interval
+ */
-int Pwl::read(const libcamera::YamlObject ¶ms)
+/**
+ * \var Pwl::Interval::start
+ * \brief Start of the interval
+ */
+
+/**
+ * \var Pwl::Interval::end
+ * \brief End of the interval
+ */
+
+/**
+ * \fn Pwl::Pwl(std::vector<PointF> const &points)
+ * \brief Construct a piecewise linear function from a list of 2D points
+ * \param points Vector of points from which to construct the piecewise linear function
+ *
+ * \a points must be in ascending order of x-value.
+ */
+
+/**
+ * \brief Populate the piecewise linear function from yaml data
+ * \param params Yaml data to populate the piecewise linear function with
+ *
+ * Any existing points in the piecewise linear function will *not* be
+ * overwritten.
+ *
+ * The yaml data is expected to be a list with an even number of numerical
+ * elements. These will be parsed in pairs into x and y points in the piecewise
+ * linear function, and added in order. x must be monotonically increasing.
+ *
+ * \return 0 on success, negative error code otherwise
+ */
+int Pwl::readYaml(const libcamera::YamlObject ¶ms)
{
if (!params.size() || params.size() % 2)
return -EINVAL;
@@ -24,64 +125,109 @@ int Pwl::read(const libcamera::YamlObject ¶ms)
auto x = it->get<double>();
if (!x)
return -EINVAL;
- if (it != list.begin() && *x <= points_.back().x)
+ if (it != list.begin() && *x <= points_.back().x())
return -EINVAL;
auto y = (++it)->get<double>();
if (!y)
return -EINVAL;
- points_.push_back(Point(*x, *y));
+ points_.push_back(PointF({ *x, *y }));
}
return 0;
}
+/**
+ * \brief Append a point to the end of the piecewise linear function
+ * \param x x-coordinate of the point to add to the piecewise linear function
+ * \param y y-coordinate of the point to add to the piecewise linear function
+ * \param eps Epsilon for the minimum x distance between points (optional)
+ *
+ * The point's x-coordinate must be greater than the x-coordinate of the last
+ * (= greatest) point already in the piecewise linear function.
+ */
void Pwl::append(double x, double y, const double eps)
{
- if (points_.empty() || points_.back().x + eps < x)
- points_.push_back(Point(x, y));
+ if (points_.empty() || points_.back().x() + eps < x)
+ points_.push_back(PointF({ x, y }));
}
+/**
+ * \brief Prepend a point to the beginning of the piecewise linear function
+ * \param x x-coordinate of the point to add to the piecewise linear function
+ * \param y y-coordinate of the point to add to the piecewise linear function
+ * \param eps Epsilon for the minimum x distance between points (optional)
+ *
+ * The point's x-coordinate must be less than the x-coordinate of the first
+ * (= smallest) point already in the piecewise linear function.
+ */
void Pwl::prepend(double x, double y, const double eps)
{
- if (points_.empty() || points_.front().x - eps > x)
- points_.insert(points_.begin(), Point(x, y));
+ if (points_.empty() || points_.front().x() - eps > x)
+ points_.insert(points_.begin(), PointF({ x, y }));
}
+/**
+ * \brief Get the domain of the piecewise linear function
+ * \return An interval representing the domain
+ */
Pwl::Interval Pwl::domain() const
{
- return Interval(points_[0].x, points_[points_.size() - 1].x);
+ return Interval(points_[0].x(), points_[points_.size() - 1].x());
}
+/**
+ * \brief Get the range of the piecewise linear function
+ * \return An interval representing the range
+ */
Pwl::Interval Pwl::range() const
{
- double lo = points_[0].y, hi = lo;
+ double lo = points_[0].y(), hi = lo;
for (auto &p : points_)
- lo = std::min(lo, p.y), hi = std::max(hi, p.y);
+ lo = std::min(lo, p.y()), hi = std::max(hi, p.y());
return Interval(lo, hi);
}
+/**
+ * \brief Check if the piecewise linear function is empty
+ * \return True if there are no points in the function, false otherwise
+ */
bool Pwl::empty() const
{
return points_.empty();
}
+/**
+ * \brief Evaluate the piecewise linear function
+ * \param[in] x The x value to input into the function
+ * \param[inout] spanPtr Initial guess for span
+ * \param[in] updateSpan Set to true to update spanPtr
+ *
+ * Evaluate Pwl, optionally supplying an initial guess for the
+ * "span". The "span" may be optionally be updated. If you want to know
+ * the "span" value but don't have an initial guess you can set it to
+ * -1.
+ *
+ * \return The result of evaluating the piecewise linear function at position \a x
+ */
double Pwl::eval(double x, int *spanPtr, bool updateSpan) const
{
- int span = findSpan(x, spanPtr && *spanPtr != -1 ? *spanPtr : points_.size() / 2 - 1);
+ int span = findSpan(x, spanPtr && *spanPtr != -1
+ ? *spanPtr
+ : points_.size() / 2 - 1);
if (spanPtr && updateSpan)
*spanPtr = span;
- return points_[span].y +
- (x - points_[span].x) * (points_[span + 1].y - points_[span].y) /
- (points_[span + 1].x - points_[span].x);
+ return points_[span].y() +
+ (x - points_[span].x()) * (points_[span + 1].y() - points_[span].y()) /
+ (points_[span + 1].x() - points_[span].x());
}
int Pwl::findSpan(double x, int span) const
{
/*
* Pwls are generally small, so linear search may well be faster than
- * binary, though could review this if large PWls start turning up.
+ * binary, though could review this if large Pwls start turning up.
*/
int lastSpan = points_.size() - 2;
/*
@@ -89,23 +235,36 @@ int Pwl::findSpan(double x, int span) const
* control point
*/
span = std::max(0, std::min(lastSpan, span));
- while (span < lastSpan && x >= points_[span + 1].x)
+ while (span < lastSpan && x >= points_[span + 1].x())
span++;
- while (span && x < points_[span].x)
+ while (span && x < points_[span].x())
span--;
return span;
}
-Pwl::PerpType Pwl::invert(Point const &xy, Point &perp, int &span,
+/**
+ * \brief Find perpendicular closest to a given point
+ * \param[in] xy Point to find the perpendicular to
+ * \param[out] perp The found perpendicular
+ * \param[inout] span The span left of the point to start searching from
+ * \param[in] eps Epsilon for the minimum x distance between points (optional)
+ *
+ * Find perpendicular closest to \a xy, starting from \a span+1 so you can call
+ * it repeatedly to check for multiple closest points (set span to -1 on the
+ * first call). Also returns "pseudo" perpendiculars; see PerpType enum.
+ *
+ * \return Type of perpendicular found
+ */
+Pwl::PerpType Pwl::invert(PointF const &xy, PointF &perp, int &span,
const double eps) const
{
assert(span >= -1);
bool prevOffEnd = false;
for (span = span + 1; span < (int)points_.size() - 1; span++) {
- Point spanVec = points_[span + 1] - points_[span];
- double t = ((xy - points_[span]) % spanVec) / spanVec.len2();
- if (t < -eps) /* off the start of this span */
- {
+ PointF spanVec = points_[span + 1] - points_[span];
+ double t = ((xy - points_[span]) * spanVec) / spanVec.len2();
+ if (t < -eps) {
+ /* off the start of this span */
if (span == 0) {
perp = points_[span];
return PerpType::Start;
@@ -113,15 +272,15 @@ Pwl::PerpType Pwl::invert(Point const &xy, Point &perp, int &span,
perp = points_[span];
return PerpType::Vertex;
}
- } else if (t > 1 + eps) /* off the end of this span */
- {
+ } else if (t > 1 + eps) {
+ /* off the end of this span */
if (span == (int)points_.size() - 2) {
perp = points_[span + 1];
return PerpType::End;
}
prevOffEnd = true;
- } else /* a true perpendicular */
- {
+ } else {
+ /* a true perpendicular */
perp = points_[span] + spanVec * t;
return PerpType::Perpendicular;
}
@@ -129,25 +288,36 @@ Pwl::PerpType Pwl::invert(Point const &xy, Point &perp, int &span,
return PerpType::None;
}
+/**
+ * \brief Compute the inverse function
+ * \param[out] trueInverse True if the result is a proper/true inverse
+ * \param[in] eps Epsilon for the minimum x distance between points (optional)
+ *
+ * Indicate if it is a proper (true) inverse, or only a best effort (e.g.
+ * input was non-monotonic).
+ *
+ * \return The inverse piecewise linear function
+ */
Pwl Pwl::inverse(bool *trueInverse, const double eps) const
{
bool appended = false, prepended = false, neither = false;
Pwl inverse;
- for (Point const &p : points_) {
- if (inverse.empty())
- inverse.append(p.y, p.x, eps);
- else if (std::abs(inverse.points_.back().x - p.y) <= eps ||
- std::abs(inverse.points_.front().x - p.y) <= eps)
+ for (PointF const &p : points_) {
+ if (inverse.empty()) {
+ inverse.append(p.y(), p.x(), eps);
+ } else if (std::abs(inverse.points_.back().x() - p.y()) <= eps ||
+ std::abs(inverse.points_.front().x() - p.y()) <= eps) {
/* do nothing */;
- else if (p.y > inverse.points_.back().x) {
- inverse.append(p.y, p.x, eps);
+ } else if (p.y() > inverse.points_.back().x()) {
+ inverse.append(p.y(), p.x(), eps);
appended = true;
- } else if (p.y < inverse.points_.front().x) {
- inverse.prepend(p.y, p.x, eps);
+ } else if (p.y() < inverse.points_.front().x()) {
+ inverse.prepend(p.y(), p.x(), eps);
prepended = true;
- } else
+ } else {
neither = true;
+ }
}
/*
@@ -161,44 +331,53 @@ Pwl Pwl::inverse(bool *trueInverse, const double eps) const
return inverse;
}
+/**
+ * \brief Compose two piecewise linear functions together
+ * \param[in] other The "other" piecewise linear function
+ * \param[in] eps Epsilon for the minimum x distance between points (optional)
+ *
+ * The "this" function is done first, and "other" after.
+ *
+ * \return The composed piecewise linear function
+ */
Pwl Pwl::compose(Pwl const &other, const double eps) const
{
- double thisX = points_[0].x, thisY = points_[0].y;
+ double thisX = points_[0].x(), thisY = points_[0].y();
int thisSpan = 0, otherSpan = other.findSpan(thisY, 0);
- Pwl result({ { thisX, other.eval(thisY, &otherSpan, false) } });
+ Pwl result({ PointF({ thisX, other.eval(thisY, &otherSpan, false) }) });
+
while (thisSpan != (int)points_.size() - 1) {
- double dx = points_[thisSpan + 1].x - points_[thisSpan].x,
- dy = points_[thisSpan + 1].y - points_[thisSpan].y;
+ double dx = points_[thisSpan + 1].x() - points_[thisSpan].x(),
+ dy = points_[thisSpan + 1].y() - points_[thisSpan].y();
if (std::abs(dy) > eps &&
otherSpan + 1 < (int)other.points_.size() &&
- points_[thisSpan + 1].y >=
- other.points_[otherSpan + 1].x + eps) {
+ points_[thisSpan + 1].y() >= other.points_[otherSpan + 1].x() + eps) {
/*
* next control point in result will be where this
* function's y reaches the next span in other
*/
- thisX = points_[thisSpan].x +
- (other.points_[otherSpan + 1].x -
- points_[thisSpan].y) *
+ thisX = points_[thisSpan].x() +
+ (other.points_[otherSpan + 1].x() -
+ points_[thisSpan].y()) *
dx / dy;
- thisY = other.points_[++otherSpan].x;
+ thisY = other.points_[++otherSpan].x();
} else if (std::abs(dy) > eps && otherSpan > 0 &&
- points_[thisSpan + 1].y <=
- other.points_[otherSpan - 1].x - eps) {
+ points_[thisSpan + 1].y() <=
+ other.points_[otherSpan - 1].x() - eps) {
/*
* next control point in result will be where this
* function's y reaches the previous span in other
*/
- thisX = points_[thisSpan].x +
- (other.points_[otherSpan + 1].x -
- points_[thisSpan].y) *
+ thisX = points_[thisSpan].x() +
+ (other.points_[otherSpan + 1].x() -
+ points_[thisSpan].y()) *
dx / dy;
- thisY = other.points_[--otherSpan].x;
+ thisY = other.points_[--otherSpan].x();
} else {
/* we stay in the same span in other */
thisSpan++;
- thisX = points_[thisSpan].x,
- thisY = points_[thisSpan].y;
+ thisX = points_[thisSpan].x(),
+ thisY = points_[thisSpan].y();
}
result.append(thisX, other.eval(thisY, &otherSpan, false),
eps);
@@ -206,32 +385,47 @@ Pwl Pwl::compose(Pwl const &other, const double eps) const
return result;
}
+/**
+ * \brief Apply function to (x,y) values at every control point
+ * \param f Function to be applied
+ */
void Pwl::map(std::function<void(double x, double y)> f) const
{
for (auto &pt : points_)
- f(pt.x, pt.y);
+ f(pt.x(), pt.y());
}
+/**
+ * \brief Apply function to (x, y0, y1) values wherever either Pwl has a
+ * control point.
+ */
void Pwl::map2(Pwl const &pwl0, Pwl const &pwl1,
std::function<void(double x, double y0, double y1)> f)
{
int span0 = 0, span1 = 0;
- double x = std::min(pwl0.points_[0].x, pwl1.points_[0].x);
+ double x = std::min(pwl0.points_[0].x(), pwl1.points_[0].x());
f(x, pwl0.eval(x, &span0, false), pwl1.eval(x, &span1, false));
+
while (span0 < (int)pwl0.points_.size() - 1 ||
span1 < (int)pwl1.points_.size() - 1) {
if (span0 == (int)pwl0.points_.size() - 1)
- x = pwl1.points_[++span1].x;
+ x = pwl1.points_[++span1].x();
else if (span1 == (int)pwl1.points_.size() - 1)
- x = pwl0.points_[++span0].x;
- else if (pwl0.points_[span0 + 1].x > pwl1.points_[span1 + 1].x)
- x = pwl1.points_[++span1].x;
+ x = pwl0.points_[++span0].x();
+ else if (pwl0.points_[span0 + 1].x() > pwl1.points_[span1 + 1].x())
+ x = pwl1.points_[++span1].x();
else
- x = pwl0.points_[++span0].x;
+ x = pwl0.points_[++span0].x();
f(x, pwl0.eval(x, &span0, false), pwl1.eval(x, &span1, false));
}
}
+/**
+ * \brief Combine two Pwls
+ *
+ * Create a new Pwl where the y values are given by running f wherever either
+ * has a knot.
+ */
Pwl Pwl::combine(Pwl const &pwl0, Pwl const &pwl1,
std::function<double(double x, double y0, double y1)> f,
const double eps)
@@ -243,27 +437,54 @@ Pwl Pwl::combine(Pwl const &pwl0, Pwl const &pwl1,
return result;
}
-void Pwl::matchDomain(Interval const &domain, bool clip, const double eps)
+/**
+ * \brief Extend the domain of the piecewise linear function
+ * \param[in] domain The domain to extend to
+ * \param[in] clip True to keep the existing edge y values, false to extrapolate
+ * \param[in] eps Epsilon for the minimum x distance between points (optional)
+ *
+ * Extend the domain of the piecewise linear function to match \a domain. If \a
+ * clip is set to true then the y values of the new edges will be the same as
+ * the existing y values of the edge points of the pwl. If false, then the y
+ * values will be extrapolated linearly from the existing edge points of the
+ * pwl.
+ */
+void Pwl::extendDomain(Interval const &domain, bool clip, const double eps)
{
int span = 0;
- prepend(domain.start, eval(clip ? points_[0].x : domain.start, &span),
+ prepend(domain.start, eval(clip ? points_[0].x() : domain.start, &span),
eps);
span = points_.size() - 2;
- append(domain.end, eval(clip ? points_.back().x : domain.end, &span),
+ append(domain.end, eval(clip ? points_.back().x() : domain.end, &span),
eps);
}
+/**
+ * \brief Multiply the piecewise linear function
+ * \param d Scalar multiplier to multiply the function by
+ * \return This function, after it has been multiplied by \a d
+ */
Pwl &Pwl::operator*=(double d)
{
for (auto &pt : points_)
- pt.y *= d;
+ pt[1] *= d;
return *this;
}
-void Pwl::debug(FILE *fp) const
+/**
+ * \brief Assemble and return a string describing the piecewise linear function
+ * \return A string describing the piecewise linear function
+ */
+std::string Pwl::toString() const
{
- fprintf(fp, "Pwl {\n");
+ std::stringstream ss;
+ ss << "Pwl { ";
for (auto &p : points_)
- fprintf(fp, "\t(%g, %g)\n", p.x, p.y);
- fprintf(fp, "}\n");
+ ss << "(" << p.x() << ", " << p.y() << ") ";
+ ss << "}";
+ return ss.str();
}
+
+} /* namespace ipa */
+
+} /* namespace libcamera */
diff --git a/src/ipa/libipa/pwl.h b/src/ipa/libipa/pwl.h
index 7d5e7e4d3..c73693341 100644
--- a/src/ipa/libipa/pwl.h
+++ b/src/ipa/libipa/pwl.h
@@ -2,126 +2,101 @@
/*
* Copyright (C) 2019, Raspberry Pi Ltd
*
- * piecewise linear functions interface
+ * Piecewise linear functions interface
*/
#pragma once
#include <functional>
#include <math.h>
+#include <string>
#include <vector>
+#include <libcamera/geometry.h>
+
#include "libcamera/internal/yaml_parser.h"
-namespace RPiController {
+#include "vector.h"
+
+namespace libcamera {
+
+namespace ipa {
class Pwl
{
public:
+ using PointF = Vector<double, 2>;
+
+ enum class PerpType {
+ None,
+ Start,
+ End,
+ Vertex,
+ Perpendicular,
+ };
+
struct Interval {
Interval(double _start, double _end)
- : start(_start), end(_end)
- {
- }
- double start, end;
+ : start(_start), end(_end) {}
+
bool contains(double value)
{
return value >= start && value <= end;
}
- double clip(double value)
+
+ double clamp(double value)
{
return value < start ? start
: (value > end ? end : value);
}
+
double len() const { return end - start; }
+
+ double start, end;
};
- struct Point {
- Point() : x(0), y(0) {}
- Point(double _x, double _y)
- : x(_x), y(_y) {}
- double x, y;
- Point operator-(Point const &p) const
- {
- return Point(x - p.x, y - p.y);
- }
- Point operator+(Point const &p) const
- {
- return Point(x + p.x, y + p.y);
- }
- double operator%(Point const &p) const
- {
- return x * p.x + y * p.y;
- }
- Point operator*(double f) const { return Point(x * f, y * f); }
- Point operator/(double f) const { return Point(x / f, y / f); }
- double len2() const { return x * x + y * y; }
- double len() const { return sqrt(len2()); }
- };
+
Pwl() {}
- Pwl(std::vector<Point> const &points) : points_(points) {}
- int read(const libcamera::YamlObject ¶ms);
+ Pwl(std::vector<PointF> const &points)
+ : points_(points) {}
+ int readYaml(const libcamera::YamlObject ¶ms);
+
void append(double x, double y, const double eps = 1e-6);
void prepend(double x, double y, const double eps = 1e-6);
+
Interval domain() const;
Interval range() const;
+
bool empty() const;
- /*
- * Evaluate Pwl, optionally supplying an initial guess for the
- * "span". The "span" may be optionally be updated. If you want to know
- * the "span" value but don't have an initial guess you can set it to
- * -1.
- */
+
double eval(double x, int *spanPtr = nullptr,
bool updateSpan = true) const;
- /*
- * Find perpendicular closest to xy, starting from span+1 so you can
- * call it repeatedly to check for multiple closest points (set span to
- * -1 on the first call). Also returns "pseudo" perpendiculars; see
- * PerpType enum.
- */
- enum class PerpType {
- None, /* no perpendicular found */
- Start, /* start of Pwl is closest point */
- End, /* end of Pwl is closest point */
- Vertex, /* vertex of Pwl is closest point */
- Perpendicular /* true perpendicular found */
- };
- PerpType invert(Point const &xy, Point &perp, int &span,
+
+ PerpType invert(PointF const &xy, PointF &perp, int &span,
const double eps = 1e-6) const;
- /*
- * Compute the inverse function. Indicate if it is a proper (true)
- * inverse, or only a best effort (e.g. input was non-monotonic).
- */
Pwl inverse(bool *trueInverse = nullptr, const double eps = 1e-6) const;
- /* Compose two Pwls together, doing "this" first and "other" after. */
Pwl compose(Pwl const &other, const double eps = 1e-6) const;
- /* Apply function to (x,y) values at every control point. */
+
void map(std::function<void(double x, double y)> f) const;
- /*
- * Apply function to (x, y0, y1) values wherever either Pwl has a
- * control point.
- */
+
static void map2(Pwl const &pwl0, Pwl const &pwl1,
std::function<void(double x, double y0, double y1)> f);
- /*
- * Combine two Pwls, meaning we create a new Pwl where the y values are
- * given by running f wherever either has a knot.
- */
+
static Pwl
combine(Pwl const &pwl0, Pwl const &pwl1,
std::function<double(double x, double y0, double y1)> f,
const double eps = 1e-6);
- /*
- * Make "this" match (at least) the given domain. Any extension my be
- * clipped or linear.
- */
- void matchDomain(Interval const &domain, bool clip = true,
- const double eps = 1e-6);
+
+ void extendDomain(Interval const &domain, bool clip = true,
+ const double eps = 1e-6);
+
Pwl &operator*=(double d);
- void debug(FILE *fp = stdout) const;
+
+ std::string toString() const;
private:
int findSpan(double x, int span) const;
- std::vector<Point> points_;
+ std::vector<PointF> points_;
};
-} /* namespace RPiController */
+} /* namespace ipa */
+
+} /* namespace libcamera */
--
2.39.2
More information about the libcamera-devel
mailing list