[PATCH 10/10] ipa: rkisp1: Remove bespoke Agc functions

Stefan Klug stefan.klug at ideasonboard.com
Wed Mar 27 17:22:10 CET 2024


Hi Daniel,

thanks for the patch.

I didn't test it, but that will get cought by CI. Does every commit
build? I just noticed, that the filterExposure missed an overwrite in
the previous patch.

Otherwise looks good to me.

Reviewed-by: Stefan Klug <stefan.klug at ideasonboard.com> 

Cheers,
Stefan

On Fri, Mar 22, 2024 at 01:14:51PM +0000, Daniel Scally wrote:
> Now that the rkisp1 Agc algorithm is a derivation of MeanLuminanceAgc
> we can remove the bespoke functions from the IPA's class.
> 
> Signed-off-by: Daniel Scally <dan.scally at ideasonboard.com>
> ---
>  src/ipa/rkisp1/algorithms/agc.cpp | 222 ------------------------------
>  src/ipa/rkisp1/algorithms/agc.h   |   9 --
>  2 files changed, 231 deletions(-)
> 
> diff --git a/src/ipa/rkisp1/algorithms/agc.cpp b/src/ipa/rkisp1/algorithms/agc.cpp
> index 3389c471..5e6a8ba0 100644
> --- a/src/ipa/rkisp1/algorithms/agc.cpp
> +++ b/src/ipa/rkisp1/algorithms/agc.cpp
> @@ -42,24 +42,7 @@ static constexpr double kMinAnalogueGain = 1.0;
>  /* \todo Honour the FrameDurationLimits control instead of hardcoding a limit */
>  static constexpr utils::Duration kMaxShutterSpeed = 60ms;
>  
> -/* Number of frames to wait before calculating stats on minimum exposure */
> -static constexpr uint32_t kNumStartupFrames = 10;
> -
> -/* Target value to reach for the top 2% of the histogram */
> -static constexpr double kEvGainTarget = 0.5;
> -
> -/*
> - * Relative luminance target.
> - *
> - * It's a number that's chosen so that, when the camera points at a grey
> - * target, the resulting image brightness is considered right.
> - *
> - * \todo Why is the value different between IPU3 and RkISP1 ?
> - */
> -static constexpr double kRelativeLuminanceTarget = 0.4;
> -
>  Agc::Agc()
> -	: frameCount_(0), filteredExposure_(0s)
>  {
>  	supportsRaw_ = true;
>  }
> @@ -127,12 +110,6 @@ int Agc::configure(IPAContext &context, const IPACameraSensorInfo &configInfo)
>  	context.configuration.agc.measureWindow.h_size = 3 * configInfo.outputSize.width / 4;
>  	context.configuration.agc.measureWindow.v_size = 3 * configInfo.outputSize.height / 4;
>  
> -	/*
> -	 * \todo Use the upcoming per-frame context API that will provide a
> -	 * frame index
> -	 */
> -	frameCount_ = 0;
> -
>  	for (auto &[id, helper] : exposureModeHelpers()) {
>  		/* \todo Run this again when FrameDurationLimits is passed in */
>  		helper->configure(context.configuration.sensor.minShutterSpeed,
> @@ -234,170 +211,6 @@ void Agc::prepare(IPAContext &context, const uint32_t frame,
>  	params->module_en_update |= RKISP1_CIF_ISP_MODULE_HST;
>  }
>  
> -/**
> - * \brief Apply a filter on the exposure value to limit the speed of changes
> - * \param[in] exposureValue The target exposure from the AGC algorithm
> - *
> - * The speed of the filter is adaptive, and will produce the target quicker
> - * during startup, or when the target exposure is within 20% of the most recent
> - * filter output.
> - *
> - * \return The filtered exposure
> - */
> -utils::Duration Agc::filterExposure(utils::Duration exposureValue)
> -{
> -	double speed = 0.2;
> -
> -	/* Adapt instantly if we are in startup phase. */
> -	if (frameCount_ < kNumStartupFrames)
> -		speed = 1.0;
> -
> -	/*
> -	 * If we are close to the desired result, go faster to avoid making
> -	 * multiple micro-adjustments.
> -	 * \todo Make this customisable?
> -	 */
> -	if (filteredExposure_ < 1.2 * exposureValue &&
> -	    filteredExposure_ > 0.8 * exposureValue)
> -		speed = sqrt(speed);
> -
> -	filteredExposure_ = speed * exposureValue +
> -			    filteredExposure_ * (1.0 - speed);
> -
> -	LOG(RkISP1Agc, Debug) << "After filtering, exposure " << filteredExposure_;
> -
> -	return filteredExposure_;
> -}
> -
> -/**
> - * \brief Estimate the new exposure and gain values
> - * \param[inout] context The shared IPA Context
> - * \param[in] frameContext The FrameContext for this frame
> - * \param[in] yGain The gain calculated on the current brightness level
> - * \param[in] iqMeanGain The gain calculated based on the relative luminance target
> - */
> -void Agc::computeExposure(IPAContext &context, IPAFrameContext &frameContext,
> -			  double yGain, double iqMeanGain)
> -{
> -	IPASessionConfiguration &configuration = context.configuration;
> -
> -	/* Get the effective exposure and gain applied on the sensor. */
> -	uint32_t exposure = frameContext.sensor.exposure;
> -	double analogueGain = frameContext.sensor.gain;
> -
> -	/* Use the highest of the two gain estimates. */
> -	double evGain = std::max(yGain, iqMeanGain);
> -
> -	utils::Duration minShutterSpeed = configuration.sensor.minShutterSpeed;
> -	utils::Duration maxShutterSpeed = std::min(configuration.sensor.maxShutterSpeed,
> -						   kMaxShutterSpeed);
> -
> -	double minAnalogueGain = std::max(configuration.sensor.minAnalogueGain,
> -					  kMinAnalogueGain);
> -	double maxAnalogueGain = configuration.sensor.maxAnalogueGain;
> -
> -	/* Consider within 1% of the target as correctly exposed. */
> -	if (utils::abs_diff(evGain, 1.0) < 0.01)
> -		return;
> -
> -	/* extracted from Rpi::Agc::computeTargetExposure. */
> -
> -	/* Calculate the shutter time in seconds. */
> -	utils::Duration currentShutter = exposure * configuration.sensor.lineDuration;
> -
> -	/*
> -	 * Update the exposure value for the next computation using the values
> -	 * of exposure and gain really used by the sensor.
> -	 */
> -	utils::Duration effectiveExposureValue = currentShutter * analogueGain;
> -
> -	LOG(RkISP1Agc, Debug) << "Actual total exposure " << currentShutter * analogueGain
> -			      << " Shutter speed " << currentShutter
> -			      << " Gain " << analogueGain
> -			      << " Needed ev gain " << evGain;
> -
> -	/*
> -	 * Calculate the current exposure value for the scene as the latest
> -	 * exposure value applied multiplied by the new estimated gain.
> -	 */
> -	utils::Duration exposureValue = effectiveExposureValue * evGain;
> -
> -	/* Clamp the exposure value to the min and max authorized. */
> -	utils::Duration maxTotalExposure = maxShutterSpeed * maxAnalogueGain;
> -	exposureValue = std::min(exposureValue, maxTotalExposure);
> -	LOG(RkISP1Agc, Debug) << "Target total exposure " << exposureValue
> -			      << ", maximum is " << maxTotalExposure;
> -
> -	/*
> -	 * Divide the exposure value as new exposure and gain values.
> -	 * \todo estimate if we need to desaturate
> -	 */
> -	exposureValue = filterExposure(exposureValue);
> -
> -	/*
> -	 * Push the shutter time up to the maximum first, and only then
> -	 * increase the gain.
> -	 */
> -	utils::Duration shutterTime = std::clamp<utils::Duration>(exposureValue / minAnalogueGain,
> -								  minShutterSpeed, maxShutterSpeed);
> -	double stepGain = std::clamp(exposureValue / shutterTime,
> -				     minAnalogueGain, maxAnalogueGain);
> -	LOG(RkISP1Agc, Debug) << "Divided up shutter and gain are "
> -			      << shutterTime << " and "
> -			      << stepGain;
> -}
> -
> -/**
> - * \brief Estimate the relative luminance of the frame with a given gain
> - * \param[in] expMeans The mean luminance values, from the RkISP1 statistics
> - * \param[in] gain The gain to apply to the frame
> - *
> - * This function estimates the average relative luminance of the frame that
> - * would be output by the sensor if an additional \a gain was applied.
> - *
> - * The estimation is based on the AE statistics for the current frame. Y
> - * averages for all cells are first multiplied by the gain, and then saturated
> - * to approximate the sensor behaviour at high brightness values. The
> - * approximation is quite rough, as it doesn't take into account non-linearities
> - * when approaching saturation. In this case, saturating after the conversion to
> - * YUV doesn't take into account the fact that the R, G and B components
> - * contribute differently to the relative luminance.
> - *
> - * \todo Have a dedicated YUV algorithm ?
> - *
> - * The values are normalized to the [0.0, 1.0] range, where 1.0 corresponds to a
> - * theoretical perfect reflector of 100% reference white.
> - *
> - * More detailed information can be found in:
> - * https://en.wikipedia.org/wiki/Relative_luminance
> - *
> - * \return The relative luminance
> - */
> -double Agc::estimateLuminance(Span<const uint8_t> expMeans, double gain)
> -{
> -	double ySum = 0.0;
> -
> -	/* Sum the averages, saturated to 255. */
> -	for (uint8_t expMean : expMeans)
> -		ySum += std::min(expMean * gain, 255.0);
> -
> -	/* \todo Weight with the AWB gains */
> -
> -	return ySum / expMeans.size() / 255;
> -}
> -
> -/**
> - * \brief Estimate the mean value of the top 2% of the histogram
> - * \param[in] hist The histogram statistics computed by the RkISP1
> - * \return The mean value of the top 2% of the histogram
> - */
> -double Agc::measureBrightness(Span<const uint32_t> hist) const
> -{
> -	Histogram histogram{ hist };
> -	/* Estimate the quantile mean of the top 2% of the histogram. */
> -	return histogram.interQuantileMean(0.98, 1.0);
> -}
> -
>  void Agc::fillMetadata(IPAContext &context, IPAFrameContext &frameContext,
>  		       ControlList &metadata)
>  {
> @@ -465,43 +278,8 @@ void Agc::process(IPAContext &context, [[maybe_unused]] const uint32_t frame,
>  	 * we receive), but is important in manual mode.
>  	 */
>  
> -	const rkisp1_cif_isp_stat *params = &stats->params;
>  	ASSERT(stats->meas_type & RKISP1_CIF_ISP_STAT_AUTOEXP);
>  
> -	Span<const uint8_t> ae{ params->ae.exp_mean, context.hw->numAeCells };
> -	Span<const uint32_t> hist{
> -		params->hist.hist_bins,
> -		context.hw->numHistogramBins
> -	};
> -
> -	double iqMean = measureBrightness(hist);
> -	double iqMeanGain = kEvGainTarget * hist.size() / iqMean;
> -
> -	/*
> -	 * Estimate the gain needed to achieve a relative luminance target. To
> -	 * account for non-linearity caused by saturation, the value needs to be
> -	 * estimated in an iterative process, as multiplying by a gain will not
> -	 * increase the relative luminance by the same factor if some image
> -	 * regions are saturated.
> -	 */
> -	double yGain = 1.0;
> -	double yTarget = kRelativeLuminanceTarget;
> -
> -	for (unsigned int i = 0; i < 8; i++) {
> -		double yValue = estimateLuminance(ae, yGain);
> -		double extra_gain = std::min(10.0, yTarget / (yValue + .001));
> -
> -		yGain *= extra_gain;
> -		LOG(RkISP1Agc, Debug) << "Y value: " << yValue
> -				      << ", Y target: " << yTarget
> -				      << ", gives gain " << yGain;
> -		if (extra_gain < 1.01)
> -			break;
> -	}
> -
> -	computeExposure(context, frameContext, yGain, iqMeanGain);
> -	frameCount_++;
> -
>  	parseStatistics(stats, context);
>  
>  	/*
> diff --git a/src/ipa/rkisp1/algorithms/agc.h b/src/ipa/rkisp1/algorithms/agc.h
> index 1271741e..311d4e94 100644
> --- a/src/ipa/rkisp1/algorithms/agc.h
> +++ b/src/ipa/rkisp1/algorithms/agc.h
> @@ -44,21 +44,12 @@ public:
>  		     ControlList &metadata) override;
>  
>  private:
> -	void computeExposure(IPAContext &Context, IPAFrameContext &frameContext,
> -			     double yGain, double iqMeanGain);
> -	utils::Duration filterExposure(utils::Duration exposureValue);
> -	double estimateLuminance(Span<const uint8_t> expMeans, double gain);
> -	double measureBrightness(Span<const uint32_t> hist) const;
>  	void fillMetadata(IPAContext &context, IPAFrameContext &frameContext,
>  			  ControlList &metadata);
>  	void parseStatistics(const rkisp1_stat_buffer *stats,
>  			     IPAContext &context);
>  	double estimateLuminance(double gain) override;
>  
> -	uint64_t frameCount_;
> -
> -	utils::Duration filteredExposure_;
> -
>  	Histogram hist_;
>  	Span<const uint8_t> expMeans_;
>  };
> -- 
> 2.34.1
> 


More information about the libcamera-devel mailing list