[PATCH v2 06/17] test: Add minimal test for Matrix

Barnabás Pőcze barnabas.pocze at ideasonboard.com
Mon Mar 31 15:52:07 CEST 2025


Hi


2025. 03. 31. 15:15 keltezéssel, Laurent Pinchart írta:
> I'm not sure what happens, this is a review of 05/17 but it cames as a
> reply to 06/17.

Oops, you're right. I'm not sure what happened.


> 
> On Wed, Mar 19, 2025 at 06:12:21PM +0100, Barnabás Pőcze wrote:
>> 2025. 03. 19. 17:11 keltezéssel, Stefan Klug írta:
>>> For calculations in upcoming algorithm patches, the inverse of a matrix
>>> is required. Add an implementation of the inverse() function for square
>>> matrices.
>>>
>>> Signed-off-by: Stefan Klug <stefan.klug at ideasonboard.com>
>>> Signed-off-by: Laurent Pinchart <laurent.pinchart at ideasonboard.com>
>>>
>>> ---
>>>
>>> Changes in v2:
>>> - Replaced the implementation by a generic one provided by Laurent that
>>>     supports arbitrary square matrices instead of 2x2 and 3x3 only.
>>> - Moved the implementation into the cpp file.
>>> ---
>>>    include/libcamera/internal/matrix.h |  16 +++
>>>    src/libcamera/matrix.cpp            | 160 ++++++++++++++++++++++++++++
>>>    2 files changed, 176 insertions(+)
>>>
>>> diff --git a/include/libcamera/internal/matrix.h b/include/libcamera/internal/matrix.h
>>> index 9b80521e3cb0..6e3c190286fe 100644
>>> --- a/include/libcamera/internal/matrix.h
>>> +++ b/include/libcamera/internal/matrix.h
>>> @@ -19,6 +19,11 @@ namespace libcamera {
>>>    
>>>    LOG_DECLARE_CATEGORY(Matrix)
>>>    
>>> +#ifndef __DOXYGEN__
>>> +template<typename T>
>>> +bool matrixInvert(Span<const T> dataIn, Span<T> dataOut, unsigned int dim);
>>> +#endif /* __DOXYGEN__ */
>>> +
>>>    template<typename T, unsigned int Rows, unsigned int Cols>
>>>    class Matrix
>>>    {
>>> @@ -88,6 +93,17 @@ public:
>>>    		return *this;
>>>    	}
>>>    
>>> +	Matrix<T, Rows, Cols> inverse(bool *ok = nullptr) const
>>
>> Returning `std::optional<...>`? Or `std::pair<Matrix<...>, bool>` if the
>> returned matrix is in any way useful?
>>
>>
>>> +	{
>>> +		static_assert(Rows == Cols, "Matrix must be square");
>>> +
>>> +		Matrix<T, Rows, Cols> inverse;
>>> +		bool res = matrixInvert(Span<const T>(data_), Span<T>(inverse.data_), Rows);
>>> +		if (ok)
>>> +			*ok = res;
>>> +		return inverse;
>>> +	}
>>> +
>>>    private:
>>>    	std::array<T, Rows * Cols> data_{};
>>>    };
>>> diff --git a/src/libcamera/matrix.cpp b/src/libcamera/matrix.cpp
>>> index 6dca7498cab3..8590f8efeff3 100644
>>> --- a/src/libcamera/matrix.cpp
>>> +++ b/src/libcamera/matrix.cpp
>>> @@ -7,6 +7,12 @@
>>>    
>>>    #include "libcamera/internal/matrix.h"
>>>    
>>> +#include <algorithm>
>>> +#include <assert.h>
>>> +#include <cmath>
>>> +#include <numeric>
>>> +#include <vector>
>>> +
>>>    #include <libcamera/base/log.h>
>>>    
>>>    /**
>>> @@ -87,6 +93,20 @@ LOG_DEFINE_CATEGORY(Matrix)
>>>     * \return Row \a i from the matrix, as a Span
>>>     */
>>>    
>>> +/**
>>> + * \fn Matrix::inverse(bool *ok) const
>>> + * \param[out] ok Indicate if the matrix was successfully inverted
>>> + * \brief Compute the inverse of the matrix
>>> + *
>>> + * This function computes the inverse of the matrix. It is only implemented for
>>> + * matrices of float and double types. If \a ok is provided it will be set to a
>>> + * boolean value to indicate of the inversion was successful. This can be used
>>> + * to check if the matrix is singular, in which case the function will return
>>> + * an identity matrix.
>>> + *
>>> + * \return The inverse of the matrix
>>> + */
>>> +
>>>    /**
>>>     * \fn Matrix::operator[](size_t i)
>>>     * \copydoc Matrix::operator[](size_t i) const
>>> @@ -142,6 +162,146 @@ LOG_DEFINE_CATEGORY(Matrix)
>>>     */
>>>    
>>>    #ifndef __DOXYGEN__
>>> +template<typename T>
>>> +bool matrixInvert(Span<const T> dataIn, Span<T> dataOut, unsigned int dim)
>>
>> Sorry, but I think this is a bit of an overkill:
>>
>>     (1) it is (most likely) slower than hard-coding the inversion of a 3x3 matrix
>>         (where it would be used);
> 
> Is this a real concern, given our usage patterns ? If so we could use
> template specialization for 3x3 matrices.

The only user I can see is `libcamera::ipa::rkisp1::algorithms::Awb::calculateRgbMeans()`,
and as far as I can tell that runs on every frame. So I don't think this is ideal, and while
of course this in and of itself is not a big issue, I think many small things add up over time.


Regards,
Barnabás Pőcze

> 
>>     (2) it adds dynamic memory allocations.
>>
>> Or am I missing something? I suppose (2) could be addressed by providing a
>> "scratch buffer" as well, but I think (1) still stands.
>>
>>> +{
>>> +	/*
>>> +	 * Convenience class to access matrix data, providing a row-major (i,j)
>>> +	 * element accessor through the call operator, and the ability to swap
>>> +	 * rows without modifying the backing storage.
>>> +	 */
>>> +	class MatrixAccessor
>>> +	{
>>> +	public:
>>> +		MatrixAccessor(Span<T> data, unsigned int rows, unsigned int cols)
>>> +			: data_(data), swap_(rows), rows_(rows), cols_(cols)
>>> +		{
>>> +			std::iota(swap_.begin(), swap_.end(), T{ 0 });
>>> +		}
>>> +
>>> +		T &operator()(unsigned int row, unsigned int col)
>>> +		{
>>> +			assert(row < rows_ && col < cols_);
>>> +			return data_[index(row, col)];
>>> +		}
>>> +
>>> +		void swap(unsigned int a, unsigned int b)
>>> +		{
>>> +			assert(a < rows_ && a < cols_);
>>> +			std::swap(swap_[a], swap_[b]);
>>> +		}
>>> +
>>> +	private:
>>> +		unsigned int index(unsigned int row, unsigned int col) const
>>> +		{
>>> +			return swap_[row] * cols_ + col;
>>> +		}
>>> +
>>> +		Span<T> data_;
>>> +		std::vector<unsigned int> swap_;
>>> +		unsigned int rows_;
>>> +		unsigned int cols_;
>>> +	};
>>> +
>>> +	/*
>>> +	 * Matrix inversion using Gaussian elimination.
>>> +	 *
>>> +	 * Start by augmenting the original matrix with an identiy matrix of
>>> +	 * the same size.
>>> +	 */
>>> +	std::vector<T> data(dim * dim * 2);
>>> +	MatrixAccessor matrix(data, dim, dim * 2);
>>> +
>>> +	for (unsigned int i = 0; i < dim; ++i) {
>>> +		for (unsigned int j = 0; j < dim; ++j)
>>> +			matrix(i, j) = dataIn[i * dim + j];
>>> +		matrix(i, i + dim) = T{ 1 };
>>> +	}
>>> +
>>> +	/* Start by triangularizing the input . */
>>> +	for (unsigned int pivot = 0; pivot < dim; ++pivot) {
>>> +		/*
>>> +		 * Locate the next pivot. To improve numerical stability, use
>>> +		 * the row with the largest value in the pivot's column.
>>> +		 */
>>> +		unsigned int row;
>>> +		T maxValue{ 0 };
>>> +
>>> +		for (unsigned int i = pivot; i < dim; ++i) {
>>> +			T value = std::abs(matrix(i, pivot));
>>> +			if (maxValue < value) {
>>> +				maxValue = value;
>>> +				row = i;
>>> +			}
>>> +		}
>>> +
>>> +		/*
>>> +		 * If no pivot is found in the column, the matrix is not
>>> +		 * invertible. Return an identity matrix.
>>> +		 */
>>> +		if (maxValue == 0) {
>>> +			std::fill(dataOut.begin(), dataOut.end(), T{ 0 });
>>> +			for (unsigned int i = 0; i < dim; ++i)
>>> +				dataOut[i * dim + i] = T{ 1 };
>>> +			return false;
>>> +		}
>>> +
>>> +		/* Swap rows to bring the pivot in the right location. */
>>> +		matrix.swap(pivot, row);
>>> +
>>> +		/* Process all rows below the pivot to zero the pivot column. */
>>> +		const T pivotValue = matrix(pivot, pivot);
>>> +
>>> +		for (unsigned int i = pivot + 1; i < dim; ++i) {
>>> +			const T factor = matrix(i, pivot) / pivotValue;
>>> +
>>> +			/*
>>> +			 * We know the element in the pivot column will be 0,
>>> +			 * hardcode it instead of computing it.
>>> +			 */
>>> +			matrix(i, pivot) = T{ 0 };
>>> +
>>> +			for (unsigned int j = pivot + 1; j < dim * 2; ++j)
>>> +				matrix(i, j) -= matrix(pivot, j) * factor;
>>> +		}
>>> +	}
>>> +
>>> +	/*
>>> +	 * Then diagonalize the input, walking the diagonal backwards. There's
>>> +	 * no need to update the input matrix, as all the values we would write
>>> +	 * in the top-right triangle aren't used in further calculations (and
>>> +	 * would all by definition be zero).
>>> +	 */
>>> +	for (unsigned int pivot = dim - 1; pivot > 0; --pivot) {
>>> +		const T pivotValue = matrix(pivot, pivot);
>>> +
>>> +		for (unsigned int i = 0; i < pivot; ++i) {
>>> +			const T factor = matrix(i, pivot) / pivotValue;
>>> +
>>> +			for (unsigned int j = dim; j < dim * 2; ++j)
>>> +				matrix(i, j) -= matrix(pivot, j) * factor;
>>> +		}
>>> +	}
>>> +
>>> +	/*
>>> +	 * Finally, normalize the diagonal and store the result in the output
>>> +	 * data.
>>> +	 */
>>> +	for (unsigned int i = 0; i < dim; ++i) {
>>> +		const T factor = matrix(i, i);
>>> +
>>> +		for (unsigned int j = 0; j < dim; ++j)
>>> +			dataOut[i * dim + j] = matrix(i, j + dim) / factor;
>>> +	}
>>> +
>>> +	return true;
>>> +}
>>> +
>>> +template bool matrixInvert<float>(Span<const float> dataIn, Span<float> dataOut,
>>> +				  unsigned int dim);
>>> +template bool matrixInvert<double>(Span<const double> data, Span<double> dataOut,
>>> +				   unsigned int dim);
>>> +
>>>    /*
>>>     * The YAML data shall be a list of numerical values. Its size shall be equal
>>>     * to the product of the number of rows and columns of the matrix (Rows x
> 



More information about the libcamera-devel mailing list