
GSoC2022: Adding UVC hardware timestamp support

Basic Information

name Y Yang

IRC nick yyang

Email address yyangoO@outlook.com

Github user ID @yyangoO

Location Shanghai, China

Timezone I will be
duration of GSoC

UTC+8

Academic background Bachelor degree, master degree in reading of control science

Classes I’ve done
C, CPP, python, operate system, computer
organization(arm), computer network, data structure

Goal

I hope to add UVC hardware timestamp support for libcamera by the end of GSoC
period.
I expect to give each UVC device's request a more accurate sensor timestamp by
using the SOF clock from UVC payload header data.

The plan

The work I've done

I've built libcamera on ubuntu20.04lts with a USB webcam.
I've read the linux kernel document and study how to use V4L2 to access UVC
payload header data.
I've read the UVC timestamp conversion function in linux kernel and figured out how it
works.
I've impleted a test application which can print each request's sensor timestamp and
it's buffers' timestamp.

The background

Currently, the timestamp in libcamera is the one that is sampled by the linux kernel
when it completes the buffer, not the exact timestamp the camera sensor capture an
image. Because of the time delay of signal transmission, the timestamp in libcamera is
not accurate enough.

mailto:yyangoO@outlook.com
https://github.com/yyangoO
https://github.com/yyangoO/libcamera-tests

PTS is the Presentation Time Stamp, which counts by using STC(Source Time Clock).
SOF is an 11 bits incremental frame number of USB standard, when we use a UVC
(USB Video Class) camera, the UVC device and the host share a same SOF signal. If
we use SOF as the 'bridge', we can calculate the timestamp camera capture image.
As the uvc_video_clock_update of linux kernel implementation, the PTS and SOF, SOF
and host clock have a linear relationship. If we can get the linear function, we can get
a more accurate timestamp.
Linux kernel maintain an uvc_clock which has an array of sample clocks. So for the
linear function , we can calculate the and easily
by using two sample clocks.

The idea

Follow the implementation of linux kernel, we can maintain a data structure which
contains some sample clocks.
During each time we complete the buffer, we calculate the more accurate timestamp
by calculating the linear function convert device clock to SOF, SOF to host clock. And
update the data structure.

The implementation

1. Finish a test application which can print each request's sensor timestamp and it's
buffers' timestamp, so that we can compare the origin timestamp and improved
timestamp. Which could be:

2. Querying Capabilities of metadata capture interface in V4L2 and check the the
support of UVC payload header data.

3. Access the UVC payload header data via V4L2 by using the V4L2_META_FMT_UVC. The
UVC metadata block extracted from UVC packet headers and provided by the UVC
driver through metadata video nodes. We can use the metadata interface in V4L2 to
get the UVC payload header data.

4. Expose the port of PTS, SOF and STC from UVC payload header data in
V4L2VideoDevice.

5. We can use the queue's FIFO feature to maintain a data structure in UVCCameraData
which is a fixed size queue of sample clocks we need, like:

y = a ⋅ x + b = (y2−y1)
(x2−x1)

⋅ x + (y1⋅x2−y2⋅x1)
(x2−x1)

a b

[processing request]--> Request(0:C:0/1:0)

 > [request]--> SensorTimestamp 12345

 > [buffer]--> Sequence 0

 > [buffer]--> Timestamp 28088940751000

 > [buffer]--> BytesUsed 20775

https://www.usb.org/document-library/video-class-v15-document-set
https://www.usb.org/document-library/video-class-v15-document-set
https://elixir.bootlin.com/linux/v5.17-rc4/source/drivers/media/usb/uvc/uvc_video.c#L629
https://elixir.bootlin.com/linux/v5.17-rc4/source/drivers/media/usb/uvc/uvcvideo.h#L632

6. Add a function in UVCCameraData so that we can use the sample clocks and PTS to
convert the timestamp of device clock to host clock, like:

7. Finally, when we complete a buffer of UVC camera in UVCCameraData::bufferReady, we
update a more accurate timestamp, like:

8. Also, we need to pay attention to dealing with the rollover of PTS and SOF.

The timeline

Week 1:
Get familiar with libcamera.
Get familiar with UVC payload header.
Get familiar with V4L2's metadata.

Week 2:
Implement a test application which can print each UVC camera request's sensor
timestamp and it's buffers' timestamp, so that we can compare the origin
timestamp and improved timestamp.

Week 3:
Add the UVC payload header data capability checking.
Add V4L2 accessing fucntion for V4L2VideoDevice.

Week 4:
Expose the port of PTS, SOF and STC in V4L2VideoDevice for UVCCameraData.

struct uvc_clock_sample_t

{

 u32 dev_stc; // device STC clock

 u16 dev_sof; // device SOF clock

 u16 host_sof; // host SOF clock

 u64 host_time; // host time clock

};

queue<uvc_clock_sample_t> sample_clock;

u64 UVCCameraData::getSensorTimeStamp();

void UVCCameraData::bufferReady(FrameBuffer *buffer)

{

 Request *request = buffer->request();

 request->metadata().set(controls::SensorTimestamp, getSensorTimeStamp());

 pipe()->completeBuffer(request, buffer);

 pipe()->completeRequest(request);

}

Test the port.
Week 5:

Implement the data structure which store the sample clock.
Test the function.

Week 6:
Implement the function in UVCCameraData which is used to update the sample
clocks data structure.
Test the function.

Week 7:
Implement the timestamp convertion function's framework in UVCCameraData.
Test the function.

Week 8:
Finish the timestamp convertion function in UVCCameraData and deal with the
rollover of PTS and SOF.

Week 9:
Implement the sensor timestamp's update in V4L2VideoDevice.
Test the function.

Week 10:
Test the whole project and debug.

Week 11:
Perfect the project.
Send in a PR.

Week 12:
Wirte documents and do the final work.

Technical background

Computer vision program with openCV

I’ve wrote a computer vision program with openCV during my college for RoboMaster
competition. In tis program I’ve used V4L2 to read camera instead of openCV’s
API, objects detection by using traditional computer vision algorithm, Kallman filter
and so on.
csu-rm-vision
use v4l2 to use camera

Vulkan android surface render for ncnn

I’ve wrote a PR for ncnn ncnn for the Vulkan surface render. I finished a Vulkan
pipeline and shader for the image’s convert and render.
And for the test of PR, I use NDK to operate camera of android device.
add android surface render

https://github.com/yyangoO/csu-rm-vision
https://github.com/yyangoO/csu-rm-vision/blob/master/src/rin_videocapture.cpp
https://github.com/Tencent/ncnn
https://github.com/Tencent/ncnn/pull/3211

cam-ncnn-win

reference

libcamrea
linux kernel: uvc_clock
linux kernel: uvc_video_clock_host_sof
linux kernel: uvc_video_clock_update
linux kernel V4L2 document
USB video class document

https://github.com/yyangoO/cam-ncnn-win
https://libcamera.org/
https://elixir.bootlin.com/linux/v5.17-rc4/source/drivers/media/usb/uvc/uvcvideo.h#L632
https://elixir.bootlin.com/linux/v5.17-rc4/source/drivers/media/usb/uvc/uvc_video.c#L602
https://elixir.bootlin.com/linux/v5.17-rc4/source/drivers/media/usb/uvc/uvc_video.c#L629
https://www.kernel.org/doc/html/v5.0/media/uapi/v4l/pixfmt-meta-uvc.html
https://www.usb.org/document-library/video-class-v15-document-set

